Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120304    DOI: 10.1088/1674-1056/24/12/120304
GENERAL Prev   Next  

Quantum speed limits for Bell-diagonal states

Han Wei (韩伟)a, Jiang Ke-Xia (江克侠)b c, Zhang Ying-Jie (张英杰)a, Xia Yun-Jie (夏云杰)a
a Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
b Department of Physics, Engineering University of CAPF, Xi'an 710086, China;
c Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence.
Keywords:  quantum information      quantum decoherence      quantum speed limit time  
Received:  09 July 2015      Revised:  25 August 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20123705120002 and 20133705110001), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014AP009), and the Scientific Research Foundation of Qufu Normal University.
Corresponding Authors:  Zhang Ying-Jie     E-mail:  yingjiezhang@mail.qfnu.edu.cn

Cite this article: 

Han Wei (韩伟), Jiang Ke-Xia (江克侠), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰) Quantum speed limits for Bell-diagonal states 2015 Chin. Phys. B 24 120304

[1] Bekenstein J D 1981 Phys. Rev. Lett. 46 623
[2] Zheng S B 2010 Chin. Phys. B 19 064204
[3] Giovanetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[4] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[5] Lloyd S 2002 Phys. Rev. Lett. 88 237901
[6] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
[7] Barnes E 2013 Phys. Rev. A 88 013808
[8] Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501
[9] Poggi P M, Lombardo F C and Wisniacki D A 2013 Europhys. Lett. 104 4005
[10] Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
[11] Fleming G N 1973 Nuovo Cimento A 16 232
[12] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
[13] Vaidman L 1992 Am. J. Phys. 60 182
[14] Margolus N and Levitin L B 1998 Physica D 120 188
[15] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[16] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[17] Jones P and Kok P 2010 Phys. Rev. A 82 022107
[18] Zwierz M 2012 Phys. Rev. A 86 016101
[19] Deffner S and Lutz E 2013 J. Phys. A: Math. Theor. 46 335302
[20] Pfeifer P 1993 Phys. Rev. Lett. 70 3365
[21] Pfeifer P and Fröhlich J 1995 Rev. Mod. Phys. 67 759
[22] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[23] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[24] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[25] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[26] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
[27] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[28] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[29] Bennett C H and Divincenzo D P 2000 Nature 404 247
[30] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Lo Franco R and Compagno G 2013 Nat. Commun. 4 2851
[31] Aaronson B, Lo Franco R and Adesso G 2013 Phys. Rev. A 88 012120
[32] Zhang Y J, Zou X B, Xia Y J and Guo G C 2010 Phys. Rev. A 82 022108
[33] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[34] Sheng Y B, Zhou L, Cheng W W, Gong L X, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
[35] Cirac J I and Zoller P 2012 Nat. Phys. 8 264
[36] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[37] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[38] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
[39] Luo S 2008 Phys. Rev. A 77 042303
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[8] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[9] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[10] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[11] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[12] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[13] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[14] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[15] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
No Suggested Reading articles found!