Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120303    DOI: 10.1088/1674-1056/24/12/120303
GENERAL Prev   Next  

Decoherence of genuine multipartite entanglement for local non-Markovian-Lorentzian reservoirs

Mazhar Ali
Department of Electrical Engineering, Faculty of Engineering, Islamic University in Madinah, Madinah 107, Kingdom of Saudi Arabia
Abstract  We study decoherence effects on genuine multipartite entanglement for three and four qubits, spatially separated and subjected to local Lorentzian reservoirs. Employing recent techniques to compute genuine negativity for multipartite systems and an exact solvable model, we analyze the dynamics of genuine entanglement for different coupling bandwidths and detunings. We find that collapses and revivals can occur by varying these parameters for various multipartite quantum states.
Keywords:  genuine negativity      decoherence      random states  
Received:  10 June 2015      Revised:  17 August 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Corresponding Authors:  Mazhar Ali     E-mail:  mazharaliawan@yahoo.com

Cite this article: 

Mazhar Ali Decoherence of genuine multipartite entanglement for local non-Markovian-Lorentzian reservoirs 2015 Chin. Phys. B 24 120303

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[3] Aolita L, de Melo F and Davidovich L 2015 Rep. Prog. Phys. 78 042001
[4] Yu T and Eberly J H 2002 Phys. Rev. B 66 193306
[5] Yu T and Eberly J H 2003 Phys. Rev. B 68 165322
[6] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[7] Eberly J H and Yu T 2007 Science 316 555
[8] Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
[9] Hein M, Dür W and Briegel H J 2005 Phys. Rev. A 71 032350
[10] Aolita L, Chaves R, Cavalcanti D, Acín A and Davidovich L 2008 Phys. Rev. Lett. 100 080501
[11] Simon C and Kempe J 2002 Phys. Rev. A 65 052327
[12] Borras A, Majtey A P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022108
[13] Cavalcanti D, Chaves R, Aolita L, Davidovich L and Ací nA 2009 Phys. Rev. Lett. 103 030502
[14] Bandyopadhyay S and Lidar D A 2005 Phys. Rev. A 72 042339
[15] Chaves R and Davidovich L 2010 Phys. Rev. A 82 052308
[16] Aolita L Cavalcanti D, Chaves R, Dhara C, Davidovich L and Ací n A 2010 Phys. Rev. A 82 032317
[17] Carvalho A R R, Mintert F and Buchleitner A 2004 Phys. Rev. Lett. 93 230501
[18] Lastra F, Romero G, Lopez C E, França Santos M and Retamal J C 2007 Phys. Rev. A 75 062324
[19] Gühne O, Bodoky F and Blaauboer M 2008 Phys. Rev. A 78 060301(R)
[20] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[21] Rau A R P, Ali M and Alber G 2008 Europhys. Lett. 82 40002
[22] Ali M, Alber G and Rau A R P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025501
[23] Ali M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045504;
[24] Ali M 2010 Phys. Rev. A 81 042303
[25] Ali M 2014 Chin. Phys. B 23 090306
[26] Ali M and Jiang H 2014 Chin. Phys. Lett. 31 110301
[27] Man Z X, Xia Y J and An Nguyen Ba 2012 Phys. Rev. A 86 052322
[28] Man Z X, Xia Y J and An Nguyen Ba 2012 Phys. Rev. A 86 012325
[29] Weinstein Y S, Feldman J, Robins J, Zukus J and Gilbert G 2012 Phys. Rev. A 85 032324
[30] Filippov S N, Rybár T and Ziman M 2012 Phys. Rev. A 85 012303
[31] Filippov S N, Melnikov A A and Ziman M 2013 Phys. Rev. A 88 062328
[32] Yang M J and Wu S T 2014 Phys. Rev. A 89 022301
[33] Wu S T 2014 Phys. Rev. A 89 034301
[34] Ali M and Gühne O 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055503
[35] Ali M 2014 Phys. Lett. A 378 2048
[36] Ali M and Rau A R P 2014 Phys. Rev. A 90 042330
[37] Ali M 2014 Open. Sys. & Info. Dyn. 21 1450008
[38] Ali M 2015 Chin. Phys. Lett. 32 060302
[39] Yu T and Eberly J H 2009 Science 323 598
[40] Xu J S, Li C F, Gong M, et al. 2010 Phys. Rev. Lett. 104 100502
[41] Zhang Y J, Man Z X, Zou X B, Xia Y J and Guo G C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045502
[42] Man Z X, Xia Y J and An Nguyen Ba 2010 New. J. Phys. 12 033020
[43] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. Lett. 106 190502
[44] Novo L, Moroder T and Gühne O 2013 Phys. Rev. A 88 012305
[45] Hofmann M, Moroder T and Gühne O 2014 J. Phys. A: Math. Theor. 47 155301
[46] See, for example, Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[47] Preskill J Lecture Notes on Quantum Information and Quantum Computation, available athttp://www.theory.caltech.edu/people/preskill/ph229.
[48] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[49] Wu S T 2012 Chin. J. Phys. 50 118
[50] Garraway B M 1997 Phys. Rev. A 55 2290
[51] Kraus K 1983 States, Effects, and Operations: Fundamental Notions of Quantum Theory (Berlin: Springer-Verlag)
[52] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[53] Li J G, Zou J and Shao B 2010 Phys. Rev. A 82 042318
[54] Peres A 1996 Phys. Rev. Lett. 77 1413
[55] Vandenberghe L and Boyd S 1996 SIAM Rev. 38 49
[56] Löfberg J 2004 YALMIP: YALMIP: a toolbox for modeling and optimization in MATLAB CACSD04: Proc. Computer Aided Control System Design Conf. (Taipei, Taiwan, 4 September 2004) p. 2849
[57] athworks.com/matlabcentral/fileexchange/30968.
[58] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[59] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. A 84 032310
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[7] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[8] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[9] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[13] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[14] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[15] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
No Suggested Reading articles found!