Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030304    DOI: 10.1088/1674-1056/ab6c45
GENERAL Prev   Next  

Quantum speed limit time of a non-Hermitian two-level system

Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发)
Synergetic Innovation Center for Quantum Effects and Application, and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  We investigated the quantum speed limit time of a non-Hermitian two-level system for which gain and loss of energy or amplitude are present. Our results show that, with respect to two distinguishable states of the non-Hermitian system, the evolutionary time does not have a nonzero lower bound. The quantum evolution of the system can be effectively accelerated by adjusting the non-Hermitian parameter, as well as the quantum speed limit time can be arbitrarily small even be zero.
Keywords:  quantum speed limit time      non-Hermitian dynamics      quantum optics  
Received:  03 November 2019      Revised:  05 January 2020      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Mao-Fa Fang     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发) Quantum speed limit time of a non-Hermitian two-level system 2020 Chin. Phys. B 29 030304

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[3] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[4] Bender C M and Brody D C 2009 Lect. Notes Phys. 789 341
[5] Assis P E G and Fring A 2008 J. Phys. A: Math. Theor. 41 244002
[6] Günther U and Samsonov B F 2008 Phys. Rev. A 78 042115
[7] Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
[8] Kawabata K, Ashida Y and Ueda M 2017 Phys. Rev. Lett. 119 190401
[9] Mostafazadeh A 2007 Phys. Rev. Lett. 99 130502
[10] Mostafazadeh A 2009 Phys. Rev. A 79 014101
[11] Uzdin R, Günther U, Rahav S and Moiseyev N 2012 J. Phys. A: Math. Theor. 45 415304
[12] Brody D C and Graefe E M 2012 Phys. Rev. Lett. 109 230405
[13] Sergi A and Zloshchastiev K G 2013 Int. J. Mod. Phys. B 27 1350163
[14] Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
[15] Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
[16] Sergi A and Zloshchastiev K G 2015 Phys. Rev. A 91 062108
[17] Gardas B, Deffner S and Saxena A 2016 Phys. Rev. A 94 040101
[18] Joshi S and Galbraith I 2018 Phys. Rev. A 98 042117
[19] Wang Y Y and Fang M F 2018 Quantum Inf. Proces. 17 208
[20] Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
[21] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[22] Rotter I 2009 J. Phys. A: Math. Theor. 42 153001
[23] Moiseyev N 2011 Non Hermitian Quantum Mechanics (Cambridge: Cambridge University Press)
[24] Zloshchastiev K G and Sergi A 2014 J. Mod. Opt. 61 1298
[25] Mandelstam L and Tamm Ig 1945 J. Phys. (USSR) 9 249
[26] Margolus N and Levitin L B 1998 Physica D 120 188
[27] Bender C M 2007 Rep. Prog. Phys. 70 947
[28] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
[29] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[30] Campo A del, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[31] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[32] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[33] Rüter C E, Makris K G, El Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[34] Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554
[35] Liu Z P, Zhang J, Ożdemir S K, Peng B, Jing H, Lu Ẍ Y, Li C W, Yang L, Nori F and Liu Y X 2016 Phys. Rev. Lett. 117 110802
[36] Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F and Guo G C 2016 Nat. Photon. 10 642
[37] Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455
[38] Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402
[39] Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901
[40] Jin L and Song Z. 2011 Phys. Rev. A 84 042116
[41] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information (10th Anniversary Edition) (New York: Cambridge University Press)
[1] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[2] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[3] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[4] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[5] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[6] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[7] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[8] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[9] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[10] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[11] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[12] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[13] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[14] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[15] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
No Suggested Reading articles found!