|
|
Quantum speed limit time of a non-Hermitian two-level system |
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发) |
Synergetic Innovation Center for Quantum Effects and Application, and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We investigated the quantum speed limit time of a non-Hermitian two-level system for which gain and loss of energy or amplitude are present. Our results show that, with respect to two distinguishable states of the non-Hermitian system, the evolutionary time does not have a nonzero lower bound. The quantum evolution of the system can be effectively accelerated by adjusting the non-Hermitian parameter, as well as the quantum speed limit time can be arbitrarily small even be zero.
|
Received: 03 November 2019
Revised: 05 January 2020
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.-p
|
(Quantum optics)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Corresponding Authors:
Mao-Fa Fang
E-mail: mffang@hunnu.edu.cn
|
Cite this article:
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发) Quantum speed limit time of a non-Hermitian two-level system 2020 Chin. Phys. B 29 030304
|
[1] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[2] |
Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
|
[3] |
Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
|
[4] |
Bender C M and Brody D C 2009 Lect. Notes Phys. 789 341
|
[5] |
Assis P E G and Fring A 2008 J. Phys. A: Math. Theor. 41 244002
|
[6] |
Günther U and Samsonov B F 2008 Phys. Rev. A 78 042115
|
[7] |
Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
|
[8] |
Kawabata K, Ashida Y and Ueda M 2017 Phys. Rev. Lett. 119 190401
|
[9] |
Mostafazadeh A 2007 Phys. Rev. Lett. 99 130502
|
[10] |
Mostafazadeh A 2009 Phys. Rev. A 79 014101
|
[11] |
Uzdin R, Günther U, Rahav S and Moiseyev N 2012 J. Phys. A: Math. Theor. 45 415304
|
[12] |
Brody D C and Graefe E M 2012 Phys. Rev. Lett. 109 230405
|
[13] |
Sergi A and Zloshchastiev K G 2013 Int. J. Mod. Phys. B 27 1350163
|
[14] |
Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
|
[15] |
Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
|
[16] |
Sergi A and Zloshchastiev K G 2015 Phys. Rev. A 91 062108
|
[17] |
Gardas B, Deffner S and Saxena A 2016 Phys. Rev. A 94 040101
|
[18] |
Joshi S and Galbraith I 2018 Phys. Rev. A 98 042117
|
[19] |
Wang Y Y and Fang M F 2018 Quantum Inf. Proces. 17 208
|
[20] |
Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
|
[21] |
Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
|
[22] |
Rotter I 2009 J. Phys. A: Math. Theor. 42 153001
|
[23] |
Moiseyev N 2011 Non Hermitian Quantum Mechanics (Cambridge: Cambridge University Press)
|
[24] |
Zloshchastiev K G and Sergi A 2014 J. Mod. Opt. 61 1298
|
[25] |
Mandelstam L and Tamm Ig 1945 J. Phys. (USSR) 9 249
|
[26] |
Margolus N and Levitin L B 1998 Physica D 120 188
|
[27] |
Bender C M 2007 Rep. Prog. Phys. 70 947
|
[28] |
Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
|
[29] |
Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
|
[30] |
Campo A del, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
|
[31] |
Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
|
[32] |
Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
|
[33] |
Rüter C E, Makris K G, El Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
|
[34] |
Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y, Nori F, Kivshar Y S, Truscott A G, Dall R G and Ostrovskaya E A 2015 Nature 526 554
|
[35] |
Liu Z P, Zhang J, Ożdemir S K, Peng B, Jing H, Lu Ẍ Y, Li C W, Yang L, Nori F and Liu Y X 2016 Phys. Rev. Lett. 117 110802
|
[36] |
Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F and Guo G C 2016 Nat. Photon. 10 642
|
[37] |
Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455
|
[38] |
Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402
|
[39] |
Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901
|
[40] |
Jin L and Song Z. 2011 Phys. Rev. A 84 042116
|
[41] |
Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information (10th Anniversary Edition) (New York: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|