Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080302    DOI: 10.1088/1674-1056/ab8a3a
GENERAL Prev   Next  

Quantum to classical transition induced by a classically small influence

Wen-Lei Zhao(赵文垒)1, Quanlin Jie(揭泉林)2
1 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  

We investigate the quantum to classical transition induced by two-particle interaction via a system of periodically kicked particles. The classical dynamics of particle 1 is almost unaffected in condition that its mass is much larger than that of particle 2. Interestingly, such classically weak influence leads to the quantum to classical transition of the dynamical behavior of particle 1. Namely, the quantum diffusion of this particle undergoes the transition from dynamical localization to the classically chaotic diffusion with the decrease of the effective Planck constant ħeff. The behind physics is due to the growth of entanglement in the system. The classically very weak interaction leads to the exponential decay of purity in condition that the classical dynamics of external degrees freedom is strongly chaotic.

Keywords:  quantum to classical transition      quantum decoherence      quantum chaos  
Received:  03 March 2020      Revised:  07 April 2020      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11864014 and 11804130).

Corresponding Authors:  Wen-Lei Zhao     E-mail:  wlzhao@jxust.edu.cn

Cite this article: 

Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林) Quantum to classical transition induced by a classically small influence 2020 Chin. Phys. B 29 080302

[1] Dana I 2014 Phys. Rev. B 89 205111
[2] Ben-Harush M and Dana I 2016 Phys. Rev. E 93 052207
[3] Wang J and Gong J B 2009 Phys. Rev. Lett. 102 244102
[4] Ho D Y H and Gong J B 2012 Phys. Rev. Lett. 109 010601
[5] Zhao W L, Wang J Z, Wang X H and Tong P Q 2019 Phys. Rev. E 99 042201
[6] Zhou L W, Chen C and Gong J B 2016 Phys. Rev. B 94 075443
[7] Li Z, Wang H Q, Zhang D W, Zhu S L and Xing D Y 2016 Phys. Rev. A 94 043617
[8] Zhou L W and Gong J B 2018 Phys. Rev. A 97 063603
[9] Borgonovi F, Izrailev F M, Santos L F and Zelevinsky V G 2016 Phys. Rep. 626 1
[10] Neill C, Roushan P, Fang M, et al., 2016 Nat. Phys. 12 1037
[11] Casati G, Chirikov B V, Izraelev F M and Ford J 1979 Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics (Berlin:Springer) p. 334
[12] Izrailev F M 1990 Phys. Rep. 196 299
[13] Dana I 2014 Can. J. Chem. 92 77
[14] Anderson P W 1958 Phys. Rev. 109 1492
[15] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev. Lett. 49 509
[16] Dadras S, Gresch A, Groiseau C, Wimberger S and Summy G S 2018 Phys. Rev. Lett. 121 070402
[17] Wang J, Guarneri I, Casati G and Gong J B 2011 Phys. Rev. Lett. 107 234104
[18] Mieck B and Graham G 2005 J. Phys. A:Math. Gen. 38 L139
[19] Zhao W L, Gong J B, Wang W G, Casati G, Liu J and Fu L B 2016 Phys. Rev. A 94 053631
[20] Zhao W L, Wang J Z and Wang W G 2019 J. Phys. A:Math. Theor. 52 305101
[21] Guarneri I 2017 Phys. Rev. E 95 032206
[22] Lopez M, Clement J F, Szriftgiser P, Garreau J C and Delande D 2012 Phys. Rev. Lett. 108 095701
[23] Bitter M and Milner V 2017 Phys. Rev. Lett. 118 034101
[24] Chabé J, Lemarie G, Gremaud B, Delande D, Szriftgiser P and Garreau J C 2008 Phys. Rev. Lett. 101 255702
[25] Lemarié G, Chabé J, Szriftgiser P, Garreau J C, Gr émaud B and Delande D 2009 Phys. Rev. A 80 043626
[26] Garreau J C 2017 C. R. Phys. 18 31
[27] Sarkar S, Paul S, Vishwakarma C, Kumar S, Verma G, Sainath S, Rapol U D and Santhanam M S 2017 Phys. Rev. Lett. 118 174101
[28] Hainaut C, Manai I, Chicireanu R, Clément J, Zemmouri S and Garreau J C 2017 Phys. Rev. Lett. 118 184101
[29] Tan J T, Luo Y R, Zhou Z and Hai W H 2016 Chin. Phys. Lett. bf 33 070302
[30] Li Z, Wang J Z and Fu L B 2013 Chin. Phys. Lett. 30 010301
[31] Yang Y B and Wang W G 2015 Chin. Phys. Lett. 32 030301
[32] Joos E, Zeh H D, Kiefer C, Giulini D, Kupsch J and Stamatescu I O 2003 Decoherence and the Appearance of a Classical World in Quantum Theory (Berlin:Springer) p. 41
[33] Zurek W H 2003 Rev. Mod. Phys. 75 715
[34] Schlosshauer M 2004 Rev. Mod. Phys. 76 1267
[35] Schlosshauer M 2008 Found. Phys. 38 796
[36] Chaudhry A Z and Gong J B 2014 Phys. Rev. A 89 014104
[37] Wang W G, He L W and Gong J B 2012 Phys. Rev. Lett. 108 070403
[38] Feynman R P and Vernon F L 1963 Ann. Phys. (Leipzig) 24 118
[39] Caldeira A O and Leggett A J 1983 Physica (Amsterdam) 121A 587
[40] Wisniacki D and Toscano F 2009 Phys. Rev. E 79 025203(R)
[41] Petitjean C and Jacquod P 2006 Phys. Rev. Lett. 97 194103
[42] Rossini D, Benenti G and Casati G 2006 Phys. Rev. E 74 036209
[43] Bandyopadhyay J N 2009 Europhys. Lett. 85 50006
[44] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 659
[45] Graham R and Kolovsky A R 1996 Phys. Rev. A 222 47
[46] Park H K and Kim S W 2003 Phys. Rev. A 67 060102(R)
[47] Takahashi K 1989 Prog. Theor. Phys. Suppl. 98 109
[48] Zhao W L and Jie Q L 2009 Commun. Theor. Phys. 51 465
[49] Zhao W L, Jie Q L and Zhou B 2010 Commun. Theor. Phys. 54 247
[50] Zhao W L, Wang J Z and Dou F Q 2012 Acta Phys. Sin. 61 240302(in China)
[51] Gadway B, Reeves J, Krinner L and Schneble D 2013 Phys. Rev. Lett. 110 190401
[52] Shepelyansky D L 1994 Phys. Rev. Lett. 73 2607
[53] Borgonovi F and Shepelyansky D L 1995 Nonlinearity 8 877
[54] Qin P Q, Andreanov A, Park H C and Flach S 2017 Sci. Rep. 7 41139
[55] Shepelyansky D L 1993 Phys. Rev. Lett. 70 1787
[56] García-Mata I and Shepelyansky D L 2009 Phys. Rev. E 79 026205
[57] Flach S, Krimer D O and Skokos C 2009 Phys. Rev. E 79 026205
[58] Veksler H, Krivolapov Y and Fishman S 2009 Phys. Rev. E 80 037201
[59] Pikovsky A and Fishman S 2011 Phys. Rev. E 83 025201
[60] Michaely E and Fishman S 2012 Phys. Rev. E 85 046218
[61] Fishman S, Krivolapov Y and Soffer A 2012 Nonlinearity 25 53
[62] Rozenbaum E B and Galitski V 2017 Phys. Rev. B 95 064303
[63] Notarnicola S, Iemini F, Rossini D, Fazio R, Silva A and Russomanno A 2018 Phys. Rev. E 97 022202
[64] Keser A C, Ganeshan S, Refael G and Galitski V 2016 Phys. Rev. B 94 085120
[65] Čadež T, Mondaini R and Sacramento P D 2017 Phys. Rev. B 96 144301
[66] Gadway B 2015 Phys. Rev. A 92 043606
[67] Alex An F, Meier E J, Ang ‘ong’ a J and Gadway B 2018 Phys. Rev. Lett. 120 040407
[68] Alex An F, Meier E J and Gadway B 2017 Nat. Comm 8 325
[69] Meier E J, Alex An F and Gadway B 2016 Phys. Rev. A 93 051602(R)
[70] Abanin D A, Roeck W D and Huveneers F 2015 Phys. Rev. Lett. 115 256803
[71] Hu B, Li B W, Liu J and Gu Y 1999 Phys. Rev. Lett. 82 4224
[72] Liu J, Cheng W T and Cheng C G 2000 Commun. Theor. Phys. 33 15
[73] Chen H S, Wang J and Gu Y 2000 Chin. Phys. Lett. 17 85
[74] Paul S, Pal H and Santhanam M S 2016 Phys. Rev. A 93 060203(R)
[75] Milner V, Steck D A, Oskay W H and Raizen M G 2000 Phys. Rev. E. 61 7223
[76] Karney C F F, Rechester A B and White R B 1982 Physica D 3 425
[77] Ott E, Antonsen T M, Jr and Hanson J D 1984 Phys. Rev. Lett. 53 2187
[78] Lakshminarayan A 2001 Phys. Rev. E 64 036207
[79] Bandyopadhyay J N and Lakshminarayan A 2002 Phys. Rev. A 89 060402
[80] Cohen D and Heller E J 2000 Phys. Rev. Lett. 84 2841
[81] Wisniacki D A and Cohen D 2002 Phys. Rev. E 66 046209
[82] Wisniacki D A, Ares N and Vergini E G 2010 Phys. Rev. Lett. 104 254101
[1] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[2] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[3] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[4] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[5] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[6] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[7] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[8] Quantum speed limits for Bell-diagonal states
Han Wei (韩伟), Jiang Ke-Xia (江克侠), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(12): 120304.
[9] Level spacing statistics for two-dimensional massless Dirac billiards
Huang Liang (黄亮), Xu Hong-Ya (徐洪亚), Lai Ying-Cheng (来颖诚), Celso Grebogi. Chin. Phys. B, 2014, 23(7): 070507.
[10] Comparison of entanglement trapping among different photonic band gap models
Zhang Ying-Jie (张英杰), Yang Xiu-Qin (杨秀芹), Han Wei (韩伟), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2013, 22(9): 090307.
[11] Chaos and quantum Fisher information in the quantum kicked top
Wang Xiao-Qian(王晓茜), Ma Jian(马健), Zhang Xi-He(张喜和), and Wang Xiao-Guang(王晓光). Chin. Phys. B, 2011, 20(5): 050510.
No Suggested Reading articles found!