Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110305    DOI: 10.1088/1674-1056/ab4d43
GENERAL Prev   Next  

A method to calculate effective Hamiltonians in quantum information

Jun-Hang Ren(任军航)1,2, Ming-Yong Ye(叶明勇)1,2, Xiu-Min Lin(林秀敏)1,2
1 Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
2 Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen 361005, China
Abstract  Effective Hamiltonian method is widely used in quantum information. We introduce a method to calculate effective Hamiltonians and give two examples in quantum information to demonstrate the method. We also give a relation between the effective Hamiltonian in the Shrödinger picture and the corresponding effective Hamiltonian in the interaction picture. Finally, we present a relation between our effective Hamiltonian method and the James-Jerke method which is currently used by many authors to calculate effective Hamiltonians in quantum information science.
Keywords:  effective Hamiltonian      method      quantum information  
Received:  02 August 2019      Revised:  11 September 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674059).
Corresponding Authors:  Ming-Yong Ye     E-mail:  myye@fjnu.edu.cn

Cite this article: 

Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏) A method to calculate effective Hamiltonians in quantum information 2019 Chin. Phys. B 28 110305

[1] Takayanagi K 2016 Ann. Phys. 372 12
[2] Takayanagi K 2016 Ann. Phys. 364 200
[3] Xu Y J, Wang S S, Chen M R and Liao Q H 2019 Laser Phys. 29 065202
[4] Ogden C D, Irish E K and Kim M S 2008 Phys. Rev. A 78 063805
[5] Su S L, Gao Y, Liang E J and Zhang S 2017 Phys. Rev. A 95 022319
[6] Yang C P, Zheng Z F and Zheng Y 2018 Opt. Lett. 43 5765
[7] Zheng Y and Yang S J 2017 Eur. Phys. J. Spec. Top. 226 2843
[8] Zhang Y B, Liu J H, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 074209
[9] Tan X, Wu J L, Deng C, Mao W J, Wang H T and Ji X 2018 Chin. Phys. B 27 100307
[10] James D F V and Jerke J 2007 Can. J. Phys. 85 625
[11] Gamel O and James D F V 2010 Phys. Rev. A 82 052106
[12] Shao W J, Wu C F and Feng X L 2017 Phys. Rev. A 95 032124
[13] Zhang Z M 2015 Quantum Optics (Beijing:Sciece Press) p. 20(in Chinese)
[14] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[7] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[8] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[9] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[10] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[11] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[12] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[13] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[14] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[15] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
No Suggested Reading articles found!