Special Issue:
TOPICAL REVIEW — Interface-induced high temperature superconductivity
|
TOPICAL REVIEW—Interface-induced high temperature superconductivity |
Prev
Next
|
|
|
Direct evidence of high temperature superconductivity in one-unit-cell FeSe films on SrTiO3 substrate by transport and magnetization measurements |
Xing Ying (邢颖)a b, Wang Jian (王健)a b |
a International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Zero resistance and Meissner effect are two crucial experimental evidences of superconductivity in determining a new kind of superconductor, which can be detected by transport and diamagnetic measurements. In this paper, we briefly review the main transport and magnetization results on the one unit cell (1-UC) FeSe films grown on SrTiO3 (STO) substrates from our team in recent years, which identify the high temperature superconductivity in 1-UC FeSe films.
|
Received: 30 June 2015
Revised: 09 October 2015
Accepted manuscript online:
|
PACS:
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934600 and 2012CB921300), the National Natural Science Foundation of China (Grant Nos. 11222434 and 11174007), and the Research Fund for the Doctoral Program of Higher Education (RFDP) of China. |
Corresponding Authors:
Wang Jian
E-mail: jianwangphysics@pku.edu.cn
|
Cite this article:
Xing Ying (邢颖), Wang Jian (王健) Direct evidence of high temperature superconductivity in one-unit-cell FeSe films on SrTiO3 substrate by transport and magnetization measurements 2015 Chin. Phys. B 24 117404
|
[1] |
Kamihara Y, Watanabe T, Hirano M and Hosono H;2008 J. Am. Chem. Soc. 130 3296
|
[2] |
Chen X H, Wu T, Wu G, Liu R H and Fang D F;2008 Nature 453 761
|
[3] |
Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L;2008 Phys. Rev. Lett. 100 247002
|
[4] |
Wen H H, Wu G, Fang L, Yang H and Zhu X Y;2008 Eurrophys. Lett. 80 17009
|
[5] |
Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
|
[6] |
Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L;2008 Eurrophys. Lett. 83 27006
|
[7] |
Wang F and Lee D H;2011 Science 332 200
|
[8] |
Pöttgen R and Johrendt D 2008 Z. Naturforsch. 63b 1135
|
[9] |
Rotter M, Tegel M and Johrendt D;2008 Phys. Rev. Lett. 101 107006
|
[10] |
Wang X C, Liu Q Q, Lü Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q;2008 Solid State Commun. 148 538
|
[11] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K;2008 Proc. Natl. Acad. Sci. USA 105 14262
|
[12] |
Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang YT, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H and Xu Z A;2008 Europhys. Lett. 83 67006
|
[13] |
Wu, G, Xie Y L, Chen H, Zhong M, Liu R H, Shi B C, Li Q J, Wang X F, Wu T, Yan Y J, Ying J J and Chen X H;2009 J. Phys.: Condens. Matter 21 142203
|
[14] |
Singh M, Sun Y and Wang J;2012 Superconductivity in Nanoscale Systems chapter 6 (Rijeka: InTech)
|
[15] |
Zhao W W, Wang Q Y, Liu M H, Zhang W H, Wang Y L, Chen M, Guo Y, He K, Chen X, Wang Y Y, Wang J, Xie X C, Niu Q, Wang L L, Ma X C, Jain J K, Chan M H and Xue Q K;2013 Solid State Commun. 165 59
|
[16] |
Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Ma X C and Xue Q K;2011 Phys. Rev. B 84 020503(R)
|
[17] |
Haviland D B, Liu Y and Goldman A M;1989 Phys. Rev. Lett. 62 2180
|
[18] |
Strongin M, Kammetrer O F, Crow J E, Parks R D, Douglass J and Jensen M A;1968 Phys. Rev. Lett. 21 1320
|
[19] |
Locquet J P, Perret F, Fompeyrine J, Mächler E, Seo J W and Tendeloo G V;1998 Nature 394 453
|
[20] |
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K;2012 Chin. Phys. Lett. 29 037402
|
[21] |
He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K and Zhou X J;2013 Nat. Mater. 12 605
|
[22] |
Tan S H, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P and Feng D L;2013 Nat. Mater. 12 634
|
[23] |
Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen MW, Xue Q K and Ma X C;2014 Chin. Phys. Lett. 31 017401
|
[24] |
Binnig G, Baratoff A, Hoenig H E and Bednorz J G;1980 Phys. Rev. Lett. 45 1352
|
[25] |
Lin X, Bridoux G, Gourgout A, Seyfarth G, Kramer S, Nardone M, Fauque B and Behnia K;2014 Phys. Rev. Lett. 112 207002
|
[26] |
Wang J, Singh M, Tian M L, Kumar N, Liu B Z, Shi C T, Jain J K, Samarth N, Mallouk T E and Chan M H W;2009 Phys. Rev. Lett. 102 247003
|
[27] |
Deng L Z, Lü B, Wu Z, Xue Y Y, Zhang W H, Li F S, Wang L L, Ma X C, Xue Q K and Chu C W;2014 Phys. Rev. B 90 214513
|
[28] |
Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y;2008 Appl. Phys. Lett. 93 152505
|
[29] |
Taen T, Tsuchiya Y, Nakajima Y and Tamegai T;2009 Phys. Rev. B 80 092502
|
[30] |
Lei H C, Hu R W and Petrovic C;2011 Phys. Rev. B 84 014520
|
[31] |
Halperin B I and Nelson D R;1979 J. Low Temp. Phys. 36 599
|
[32] |
Reyren N, Tlhiel S, Caviglia A D, Kourkoutis L F, Hammer G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J;2007 Science 317 1196
|
[33] |
Sun Y, Zhang W H, Xing Y, Li F S, Zhao Y F, Xia Z C, Wang L L, Ma X C, Xue Q K and Wang J;2014 Sci. Rep. 4 6040
|
[34] |
Yeshurun Y and Malozemoff A P 1988 , Phys. Rev. B 60 2202
|
[35] |
Lee H S, Bartkowiak M, Kim J S and Lee H J;2010 Phys. Rev. B 82 104523
|
[36] |
Liu T J, Ke X, Qian B, Hu J, Fobes D, Vehstedt E K, Pham H, Yang J H, Fang M H, Spinu L, Schiffer P, Liu Y and Mao Z Q;2011 Phys. Rev. B 80 174509
|
[37] |
Yadav A K, Thakur A D and Tomy C V;2013 Phys. Rev. B 87 174524
|
[38] |
Zhang W H, Li Z, Li F S, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C and Xue Q K;2014 Phys. Rev. B 89 060506(R)
|
[39] |
Bozovic I and Ahn C;2014 Nat. Phys. 10 892
|
[40] |
Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F;2015 Nat. Mater. 14 285
|
[41] |
Lee J J, Schmitt F T, Moore R G, Johnston S, Cui YT, Li W, Yi W, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X;2014 Nature 515 245
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|