CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
C–H complex defects and their influence in ZnO single crystal |
Xie Hui (谢辉), Zhao You-Wen (赵有文), Liu Tong (刘彤), Dong Zhi-Yuan (董志远), Yang Jun (杨俊), Liu Jing-Ming (刘京明) |
Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional SemiconductorMaterials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Infrared absorption local vibration mode (LVM) spectroscopy is used to study hydrogen related defects in n-type ZnO single crystal grown by a closed chemical vapor transport (CVT) method under Zn-rich growth conditions, in which carbon is used as a transport agent. Two C-H complex related absorption peaks at 2850 cm-1 and 2919 cm-1 are detected in the sample. The formation of the C-H complex implies an effect of carbon donor passivation and formation suppression of H donor in ZnO. The influence of the complex defects on the electrical property of the CVT-ZnO is discussed based on Hall measurement results and residual impurity analysis.
|
Received: 30 March 2015
Revised: 04 May 2015
Accepted manuscript online:
|
PACS:
|
77.55.hf
|
(ZnO)
|
|
91.60.Ed
|
(Crystal structure and defects, microstructure)
|
|
07.57.Hm
|
(Infrared, submillimeter wave, microwave, and radiowave sources)
|
|
63.20.Pw
|
(Localized modes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474104). |
Corresponding Authors:
Zhao You-Wen
E-mail: zhaoyw@semi.ac.cn
|
Cite this article:
Xie Hui (谢辉), Zhao You-Wen (赵有文), Liu Tong (刘彤), Dong Zhi-Yuan (董志远), Yang Jun (杨俊), Liu Jing-Ming (刘京明) C–H complex defects and their influence in ZnO single crystal 2015 Chin. Phys. B 24 107704
|
[1] |
Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
[2] |
Asghar M, Mahmood K, Hasan M A, Ferguson I T, Tsu R and Willander M 2014 Chin. Phys. B 23 097101
|
[3] |
Guo B, Ye H and Qiu Z R 2003 Chin. Phys. Lett. 20 1571
|
[4] |
Xu P S, Sun Y M, Shi C S, Xu F Q and Pan H B 2001 Chin. Phys. Lett. 18 1252
|
[5] |
McCluskey M D and Jokela S J 2009 J. Appl. Phys. 106 071101
|
[6] |
Lavrov E V 2003 Physica B 340 195
|
[7] |
Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B and Nordlund K 2005 Phys. Rev. Lett. 95 225502
|
[8] |
Selim F A, Weber M H, Solodovnikov D and Lynn K G 2007 Phys. Rev. Lett. 99 085502
|
[9] |
Zhao Y W, Dong Z Y, Wei X C, Duan M L and Li J M 2006 Chin. J. Semicond. 27 336
|
[10] |
Leigh R S and Newman R C 1998 Semicond. Sci. Technol. 384
|
[11] |
Ulrici W 2004 Rep. Prog. Phys. 67 2233
|
[12] |
McCluskey M D 2000 J. Appl. Phys. 87 3593
|
[13] |
Lavrov E V 2009 Physica B 404 5075
|
[14] |
Jagadish C and Pearton S 2006 Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications (Amsterdam: Elsevier) p. 69
|
[15] |
Nickel N H and Fleischer K 2003 Phys. Rev. Lett 90 197402
|
[16] |
Lavrov E V, Weber J, Borrnert F, Van de Walle C G and Helbig R 2002 Phys. Rev. B 66 165205
|
[17] |
Lavrov E V, Borrnert F and Weber J 2005 Phys. Rev. B 71 035205
|
[18] |
Lavrov E V, Borrnert F and Weber J 2006 Physica B 376 694
|
[19] |
Jokela S J, Tarun M C, McCluskey M D 2009 Physica B 404 4810
|
[20] |
Jokela S J, McCluskey M D and Lynn K G 2003 Physica B 340 221
|
[21] |
Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X and Willander M 2006 Appl. Phys. Lett. 89 262112
|
[22] |
Cizek J, Zaludova N, Vlach M, Danis S, Kuriplach J, Prochazka I, Brauer G, Anwand W, Grambole D, Skorupa W, Gemma R, Kirchheim R and Pundt A 2008 J. Appl. Phys. 103 053508
|
[23] |
Newman R C 1973 Infra-red Studies of Crystal Defects (London: Taylor and Francis)
|
[24] |
Friedrich F, Gluba M A and Nickel N H 2009 Appl. Phys. Lett. 95 141903
|
[25] |
Matsumoto K, Kuriyama K and Kushida K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 267 1568
|
[26] |
Shi G A, Stavola M, Pearton S J, Thieme M, Lavrov E V and Weber J 2005 Phys. Rev. B 72 195211
|
[27] |
Lavrov E V, Herklotz F and Weber J 2009 Phys. Rev. B 79 165210
|
[28] |
Zhao Y W, Dong Z Y, Wei X C, Duan M L and Li J M 2006 Journal of Rare Earths 244
|
[29] |
Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y and Dai Y 2012 ACS Appl. Mater. Interfaces 4 4024
|
[30] |
Zhao Y W, Zhang F, Zhang R, Dong Z Y, Wei X C, Zeng Y P and Li J M 2007 Proc. SPIE-Int. Soc. Opt. Eng. 6841 684101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|