Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107703    DOI: 10.1088/1674-1056/24/10/107703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods

Zong Xian-Li (宗仙丽), Zhu Rong (朱荣)
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Abstract  

The ultraviolet (UV) photoresponses of ZnO nanorods directly grown on and between two micro Au-electrodes by using electric-field-assisted wet chemical method are measured comprehensively under different conditions, including ambient environment, applied bias voltage, gate voltage and temperature. Experimental results indicate that the photoresponses of the ZnO nanorods can be modulated by surface oxygen adsorptions, applied voltages, as well as temperatures. A model taking into account both surface adsorbed oxygen and electron-hole activities inside ZnO nanorods is proposed. The enhancement effect of the bias voltage on photoresponse is also analyzed. Experimental results shows that the UV response time (to 63%) of ZnO nanorods in air and at 59 ℃ could be shortened from 34.8 s to 0.24 s with a bias of 4 V applied between anode and cathode.

Keywords:  ZnO nanorods      UV photoresponse      surface effect      applied voltage effect  
Received:  28 February 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  78.67.Qa (Nanorods)  
  95.85.Mt (Ultraviolet (10-300 nm))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 91123017).

Corresponding Authors:  Zhu Rong     E-mail:  rong_zhu@263.net

Cite this article: 

Zong Xian-Li (宗仙丽), Zhu Rong (朱荣) Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods 2015 Chin. Phys. B 24 107703

[1] Karpina V A, Lazorenko V ., Lashkarev C V, Dobrowolski V D, Kopylova L I, Baturin V A, Pustovoytov S A Karpenko A Ju, Eremin S A, Lytvyn P M Ovsyannikov V P and Mazurenko E A 2004 Cryst. Res. Technol. 39 980
[2] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A Dogan S Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[3] Xu S and Wang Z L 2011 Nano Res. 4 1013
[4] Takahashi Y, Kanamori M, Kondoh A, Minoura H and Ohya Y 1994 Jpn. J. Appl. Phys. 33 6611
[5] Li Q H, Gao T, Wang Y G and Wang T H 2005 Appl. Phys. Lett. 86 123117
[6] Li Q H, Liang Y X, Wan Q and Wang T H 2004 Appl. Phys. Lett. 85 6389
[7] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R Park J Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[8] Savu R, Parra R, Jancar B, Zaghete M A and Joanni E 2011 IEEE Sensors Journal 11 1820
[9] Li Y, Gong J and Deng Y 2010 Sensors and Actuators A 158 176
[10] Guo L Zhang H, Zhao D, Li B, Zhang Z, Jiang M and Shen D 2013 Chin. Phys. B 22 018502
[11] Li D and Zhu R 2013 Chin. Phys. B 22 018502
[12] Liu Z, Zhu R and Zhang G 2010 J. Phys. D: Appl. Phys. 43 155402
[13] Zong X, Zhu R and Li D 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO), August 20-23, 2012, Birmingham, England, p. 1
[14] Santucci V, Maury F and Senocq F 2010 Thin Solid Films 518 1675
[15] Bube R H 1960 Photoconductivity of Solids (New York: John Wiley and Sons) p. 60
[16] Bera A and Basak D 2008 Appl. Phys. Lett. 93 053102
[17] LiY, Paulsen A, Yamada I, Koide Y and Delaunay J 2010 Nanotechnology 21 295502
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[3] The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles
Erfan Kadivar, Mojtaba Farrokhbin. Chin. Phys. B, 2018, 27(4): 046801.
[4] Surface effects on the thermal conductivity of silicon nanowires
Hai-Peng Li(李海鹏), Rui-Qin Zhang(张瑞勤). Chin. Phys. B, 2018, 27(3): 036801.
[5] Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods
Mehdi Ahmadi, Sajjad Rashidi Dafeh. Chin. Phys. B, 2015, 24(11): 117203.
[6] Magnetization of Gd diffused Yba2Cu3O7-x superconductor:Experiment and theory
F. Inanira, Ş. Yildizb, K. Ozturkc, S. Celebic. Chin. Phys. B, 2013, 22(7): 077402.
[7] Electronic states and shape of silicon quantum dots
Huang Wei-Qi (黄伟其), Miao Xing-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Cheng Han-Qiong (陈汉琼), Shu Qin (苏琴). Chin. Phys. B, 2013, 22(6): 064207.
[8] Curved surface effect and emission on silicon nanostructures
Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2013, 22(10): 104204.
[9] Surface effect of nanocrystals doped with rare earth ions enriched on surface and its application in upconversion luminescence
He En-Jie(何恩节) Liu Ning(刘宁), Zhang Mao-Lian(章毛连), Qin Yan-Fu(秦炎福), Guan Bang-Gui(官邦贵), Li Yong(李勇), and Guo Ming-Lei(郭明磊) . Chin. Phys. B, 2012, 21(7): 073201.
[10] Ag-doped ZnO nanorods synthesized by two-step method
Chen Xian-Mei (陈先梅), Ji Yong (冀勇), Gao Xiao-Yong (郜小勇), Zhao Xian-Wei (赵显伟 ). Chin. Phys. B, 2012, 21(11): 116801.
[11] Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers
Zhang Jia-Hong(张加宏), Li Min(李敏), Gu Fang(顾芳), and Liu Qing-Quan(刘清惓) . Chin. Phys. B, 2012, 21(1): 016203.
No Suggested Reading articles found!