CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films |
Lu Zeng-Xing (芦增星)a, Song Xiao (宋骁)a, Zhao Li-Na (赵丽娜)a, Li Zhong-Wen (李忠文)a, Lin Yuan-Bin (林远彬)a, Zeng Min (曾敏)a, Zhang Zhang (张璋)a, Lu Xu-Bing (陆旭兵)a, Wu Su-Juan (吴素娟)a, Gao Xing-Sen (高兴森)a, Yan Zhi-Bo (严志波)b, Liu Jun-Ming (刘俊明)b |
a Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China; b Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current-voltage (I-V) curve exhibits a well-established polarization-modulated memristor behavior. At low temperatures (< 253 K), the I-V curve shows an open circuit voltage (OCV), which possibly originates from the dielectric relaxation effects, accompanied with a current hump due to the polarization reversal displacement current. While at relative higher temperatures (> 253 K), the I-V behaviors are governed by both space-charge-limited conduction (SCLC) and Ohmic behavior. The polarization reversal is able to trigger the conduction switching from Ohmic to SCLC behavior, leading to the observed ferroelectric resistive switching. At a temperature of >298 K, there occurs a new resistive switching hysteresis at high bias voltages, which may be related to defect-mediated effects.
|
Received: 10 March 2015
Revised: 14 May 2015
Accepted manuscript online:
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
85.25.Hv
|
(Superconducting logic elements and memory devices; microelectronic circuits)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272078 and 51332007), the State Key Program for Basic Research of China (Grant No 2015CB921202), the Guangdong Provincial Universities and Colleges Pearl River Scholar Funded Scheme, China (2014), the International Science & Technology Cooperation Platform Program of Guangzhou, China (Grant No. 2014J4500016), and the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT1243). |
Corresponding Authors:
Gao Xing-Sen, Liu Jun-Ming
E-mail: xingsengao@scnu.edu.cn;liujm@nju.edu.cn
|
Cite this article:
Lu Zeng-Xing (芦增星), Song Xiao (宋骁), Zhao Li-Na (赵丽娜), Li Zhong-Wen (李忠文), Lin Yuan-Bin (林远彬), Zeng Min (曾敏), Zhang Zhang (张璋), Lu Xu-Bing (陆旭兵), Wu Su-Juan (吴素娟), Gao Xing-Sen (高兴森), Yan Zhi-Bo (严志波), Liu Jun-Ming (刘俊明) Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films 2015 Chin. Phys. B 24 107705
|
[1] |
Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507
|
[2] |
Wang C, Jin K J, Xu Z T, Wang L, Ge C, Lu H B, Guo H Z, He M and Yang G Z 2011 Appl. Phys. Lett. 98 192901
|
[3] |
Lin Y B, Yan Z B, Lu X B, Lu Z X, Zeng M, Chen Y, Gao X S, Wan J G, Dai J Y and Liu J M 2014 Appl. Phys. Lett. 104 143503
|
[4] |
Chanthbouala A, Crassous A, Garcia V, Bouzehouane K, Fusil S, Moya X, Allibe J, Dlubak B, Grollier J, Xavier S, Deranlot C, Moshar A, Proksch R, Mathur N D, Bibes M and Barthélémy A 2012 Nature Nanotech. 7 101
|
[5] |
Yamada H, Garcia V, Fusil S, Boyn S, Marinova M, Gloter A, Xavier S, Grollier J, Jacquet E, Carrétéro C, Deranlot C, Bibes M and Barthélémy A 2013 ACS Nano 7 5385
|
[6] |
Jiménez D, Miranda E, Tsurumaki-Fukuchi A, Yamada H, Suñé J and Sawa A 2013 Appl. Phys. Lett. 103 263502
|
[7] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[8] |
Sando D, Barthelemy A and Bibes M 2014 J. Phys.: Condens. Matter 26 473201
|
[9] |
Clark S J and Robertson J 2007 Appl. Phys. Lett. 90 132903
|
[10] |
Catalan G and Scott J F 2009 Adv. Mater. 21 2463
|
[11] |
Ji W, Yao K and Liang Y C 2010 Adv. Mater. 22 1763
|
[12] |
Li H, Jin K X, Yang S H, Wang J, He M, Luo B C, Wang J Y, Chen C L and Wu T 2012 J. Appl. Phys. 112 083506
|
[13] |
Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science 324 63
|
[14] |
Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B and Noh T W 2011 Phys. Rev. B 84 125305
|
[15] |
Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Liu X L, Zhao X Z, Liu Y and Dong S X 2013 Appl. Phys. Lett. 102 102901
|
[16] |
Li M, Zhuge F, Zhu X J, Yin K B, Wang J Z, Liu Y W, He C L, Chen B and Li R W 2010 Nanotechnology 21 425202
|
[17] |
Liu G Z, Wang C, Wang C C, Qiu J, He M, Xing J, Jin K J, Lu H B and Yang G Z 2008 Appl. Phys. Lett. 92 122903
|
[18] |
Chen X M, Wu G H, Zhang H L, Qin N, Wang T, Wang F F, Shi W Z and Bao D H 2010 Appl. Phys. A 100 987
|
[19] |
Wang L, Wang Z, Jin K J, Li J Q, Yang H X, Wang C, Zhao R Q, Lu H B, Guo H Z and Yang G Z 2013 Appl. Phys. Lett. 102 242902
|
[20] |
Wu S X, Ren L Z, Yu F M, Yang K G, Yang M, Wang Y J, Meng M, Zhou W Q and Li S W 2014 Appl. Phys. A 116 1741
|
[21] |
Tsurumaki-Fukuchi A, Yamada H and Sawa A 2013 Appl. Phys. Lett. 103 152903
|
[22] |
Tsurumaki A, Yamada H and Sawa A 2012 Adv. Funct. Mater. 22 1040
|
[23] |
Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco J F and Fusil S 2007 Phys. Rev. B 76 024116
|
[24] |
Gao R L, Fu C L, Cai W, Chen G, Deng X L, Yang H W, Sun J R and Shen B G 2014 Chin. Phys. B 23 097702
|
[25] |
Watanabe Y and Okano M 2003 J. Appl. Phys. 94 7187
|
[26] |
Watanabe Y 1995 Appl. Phys. Lett. 66 28
|
[27] |
Saraf S, Markovich M, Vincent T, Rechter R and Rothschild A 2013 Appl. Phys. Lett. 102 022902
|
[28] |
Watanabe Y 1999 Phys. Rev. B 59 11257
|
[29] |
Pabst G W, Martin L W, Chu Y H and Ramesh R 2007 Appl. Phys. Lett. 90 072902
|
[30] |
Jiang X L, Zhao Y G, Zhang X, Zhu M H, Zhang H Y, Shang D S and Sun J R 2013 Appl. Phys. Lett. 102 233501
|
[31] |
Chen Z H, He L, Zhang F, Jiang J, Meng J W, Zhao B Y and Jiang A Q 2013 J. Appl. Phys. 113 184106
|
[32] |
Shang D, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Phys. Rev. B 73 245427
|
[33] |
Lampert M A and Mark P 1970 Current Injection in Solids (New York: Academic Press) p. 363
|
[34] |
Lampert M A 1956 Phys. Rev. B 103 1648
|
[35] |
Mead C 1962 Phys. Rev. 128 2088
|
[36] |
Zubko P, Jung D J and Scott J F 2006 J. Appl. Phys. 100 114113
|
[37] |
Ranjith R, Prellier W, Cheah J W, Wang J and Wu T 2008 Appl. Phys. Lett. 92 232905
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|