Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107705    DOI: 10.1088/1674-1056/24/10/107705
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films

Lu Zeng-Xing (芦增星)a, Song Xiao (宋骁)a, Zhao Li-Na (赵丽娜)a, Li Zhong-Wen (李忠文)a, Lin Yuan-Bin (林远彬)a, Zeng Min (曾敏)a, Zhang Zhang (张璋)a, Lu Xu-Bing (陆旭兵)a, Wu Su-Juan (吴素娟)a, Gao Xing-Sen (高兴森)a, Yan Zhi-Bo (严志波)b, Liu Jun-Ming (刘俊明)b
a Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
b Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current-voltage (I-V) curve exhibits a well-established polarization-modulated memristor behavior. At low temperatures (< 253 K), the I-V curve shows an open circuit voltage (OCV), which possibly originates from the dielectric relaxation effects, accompanied with a current hump due to the polarization reversal displacement current. While at relative higher temperatures (> 253 K), the I-V behaviors are governed by both space-charge-limited conduction (SCLC) and Ohmic behavior. The polarization reversal is able to trigger the conduction switching from Ohmic to SCLC behavior, leading to the observed ferroelectric resistive switching. At a temperature of >298 K, there occurs a new resistive switching hysteresis at high bias voltages, which may be related to defect-mediated effects.
Keywords:  ferroelectric      memristor      resistive random access memory  
Received:  10 March 2015      Revised:  14 May 2015      Accepted manuscript online: 
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272078 and 51332007), the State Key Program for Basic Research of China (Grant No 2015CB921202), the Guangdong Provincial Universities and Colleges Pearl River Scholar Funded Scheme, China (2014), the International Science & Technology Cooperation Platform Program of Guangzhou, China (Grant No. 2014J4500016), and the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT1243).
Corresponding Authors:  Gao Xing-Sen, Liu Jun-Ming     E-mail:  xingsengao@scnu.edu.cn;liujm@nju.edu.cn

Cite this article: 

Lu Zeng-Xing (芦增星), Song Xiao (宋骁), Zhao Li-Na (赵丽娜), Li Zhong-Wen (李忠文), Lin Yuan-Bin (林远彬), Zeng Min (曾敏), Zhang Zhang (张璋), Lu Xu-Bing (陆旭兵), Wu Su-Juan (吴素娟), Gao Xing-Sen (高兴森), Yan Zhi-Bo (严志波), Liu Jun-Ming (刘俊明) Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films 2015 Chin. Phys. B 24 107705

[1] Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507
[2] Wang C, Jin K J, Xu Z T, Wang L, Ge C, Lu H B, Guo H Z, He M and Yang G Z 2011 Appl. Phys. Lett. 98 192901
[3] Lin Y B, Yan Z B, Lu X B, Lu Z X, Zeng M, Chen Y, Gao X S, Wan J G, Dai J Y and Liu J M 2014 Appl. Phys. Lett. 104 143503
[4] Chanthbouala A, Crassous A, Garcia V, Bouzehouane K, Fusil S, Moya X, Allibe J, Dlubak B, Grollier J, Xavier S, Deranlot C, Moshar A, Proksch R, Mathur N D, Bibes M and Barthélémy A 2012 Nature Nanotech. 7 101
[5] Yamada H, Garcia V, Fusil S, Boyn S, Marinova M, Gloter A, Xavier S, Grollier J, Jacquet E, Carrétéro C, Deranlot C, Bibes M and Barthélémy A 2013 ACS Nano 7 5385
[6] Jiménez D, Miranda E, Tsurumaki-Fukuchi A, Yamada H, Suñé J and Sawa A 2013 Appl. Phys. Lett. 103 263502
[7] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[8] Sando D, Barthelemy A and Bibes M 2014 J. Phys.: Condens. Matter 26 473201
[9] Clark S J and Robertson J 2007 Appl. Phys. Lett. 90 132903
[10] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[11] Ji W, Yao K and Liang Y C 2010 Adv. Mater. 22 1763
[12] Li H, Jin K X, Yang S H, Wang J, He M, Luo B C, Wang J Y, Chen C L and Wu T 2012 J. Appl. Phys. 112 083506
[13] Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science 324 63
[14] Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B and Noh T W 2011 Phys. Rev. B 84 125305
[15] Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Liu X L, Zhao X Z, Liu Y and Dong S X 2013 Appl. Phys. Lett. 102 102901
[16] Li M, Zhuge F, Zhu X J, Yin K B, Wang J Z, Liu Y W, He C L, Chen B and Li R W 2010 Nanotechnology 21 425202
[17] Liu G Z, Wang C, Wang C C, Qiu J, He M, Xing J, Jin K J, Lu H B and Yang G Z 2008 Appl. Phys. Lett. 92 122903
[18] Chen X M, Wu G H, Zhang H L, Qin N, Wang T, Wang F F, Shi W Z and Bao D H 2010 Appl. Phys. A 100 987
[19] Wang L, Wang Z, Jin K J, Li J Q, Yang H X, Wang C, Zhao R Q, Lu H B, Guo H Z and Yang G Z 2013 Appl. Phys. Lett. 102 242902
[20] Wu S X, Ren L Z, Yu F M, Yang K G, Yang M, Wang Y J, Meng M, Zhou W Q and Li S W 2014 Appl. Phys. A 116 1741
[21] Tsurumaki-Fukuchi A, Yamada H and Sawa A 2013 Appl. Phys. Lett. 103 152903
[22] Tsurumaki A, Yamada H and Sawa A 2012 Adv. Funct. Mater. 22 1040
[23] Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco J F and Fusil S 2007 Phys. Rev. B 76 024116
[24] Gao R L, Fu C L, Cai W, Chen G, Deng X L, Yang H W, Sun J R and Shen B G 2014 Chin. Phys. B 23 097702
[25] Watanabe Y and Okano M 2003 J. Appl. Phys. 94 7187
[26] Watanabe Y 1995 Appl. Phys. Lett. 66 28
[27] Saraf S, Markovich M, Vincent T, Rechter R and Rothschild A 2013 Appl. Phys. Lett. 102 022902
[28] Watanabe Y 1999 Phys. Rev. B 59 11257
[29] Pabst G W, Martin L W, Chu Y H and Ramesh R 2007 Appl. Phys. Lett. 90 072902
[30] Jiang X L, Zhao Y G, Zhang X, Zhu M H, Zhang H Y, Shang D S and Sun J R 2013 Appl. Phys. Lett. 102 233501
[31] Chen Z H, He L, Zhang F, Jiang J, Meng J W, Zhao B Y and Jiang A Q 2013 J. Appl. Phys. 113 184106
[32] Shang D, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Phys. Rev. B 73 245427
[33] Lampert M A and Mark P 1970 Current Injection in Solids (New York: Academic Press) p. 363
[34] Lampert M A 1956 Phys. Rev. B 103 1648
[35] Mead C 1962 Phys. Rev. 128 2088
[36] Zubko P, Jung D J and Scott J F 2006 J. Appl. Phys. 100 114113
[37] Ranjith R, Prellier W, Cheah J W, Wang J and Wu T 2008 Appl. Phys. Lett. 92 232905
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[8] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[9] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[10] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[11] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[12] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[13] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[14] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[15] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
No Suggested Reading articles found!