ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite |
Lihong Shi(史丽弘)1,† and Jiebin Peng(彭洁彬)2,‡ |
1 School of Science, JiangNan University, Wuxi 214122, China; 2 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China |
|
|
Abstract Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort. Manipulating the coated quasi-particles between the composite components offers a platform to study the advanced thermoregulatory textiles. Here, we propose that coating the hyperbolic polariton can be an effective tool to tune infrared absorption in hexagonal boron nitride-coated silk composite. Remarkably, we achieve significant tuning of the infrared absorption efficiency of silk fibrils through the designed hexagonal boron nitride film. The underlying mechanism is related to resonance coupling between hyperbolic phonon polaritons. We find a notably high infrared absorption efficiency, nearly 3 orders larger than that without hBN coating, which can be achieved in our composite system. Our results indicate the promising future of advanced polariton-coated textiles and open a pathway to guide the artificial-intelligence design of advanced functional textiles.
|
Received: 14 May 2022
Revised: 21 July 2022
Accepted manuscript online: 26 August 2022
|
PACS:
|
44.40.+a
|
(Thermal radiation)
|
|
65.90.+i
|
(Other topics in thermal properties of condensed matter)
|
|
33.20.Ea
|
(Infrared spectra)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
Corresponding Authors:
Lihong Shi, Jiebin Peng
E-mail: lihong@jiangnan.edu.cn;pengjiebin@hotmail.com
|
Cite this article:
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬) Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite 2022 Chin. Phys. B 31 114401
|
[1] Dolez P and Vermeersch O 2018 Introduction to advanced characterization and testing of textiles, in: Advanced Charaterization and Testing of Textiles (Elsevier) [2] Zhao D, Lu X, Fan T, Wu Y S, Lou L, Wang Q, Fan J and Yang R 2018 Appl. Energy 218 282 [3] Peng L, Su B, Yu A and Jiang X 2019 Cellulose 26 1 [4] Hu R, Liu Y D,Shin S M, Huang S Y, Ren X C, Shu W C, Cheng J J, Tao G M, Xu W L, Chen R K and Luo X B 2020 Adv. Energy Mater. 10 1903921 [5] Pakdel E, Naebe M, Sun L and Wang X 2019 ACS Appl. Mater. Interfaces 11 13039 [6] Sabir T 2018 Fibers used for high-performance apparel. in: High-Performance Apparel (Elsevier) [7] Wang L 2016 Performance Testing of Textiles: Methods, Technology and Applications (Woodhead Publishing) [8] Hsu P C, Liu X, Liu C, Xie X, Lee H R, Welch A J, Zhao T and Cui Y 2014 Nano Lett. 15 365 [9] Hazarika A, Deka B K, Kim D, Jeong H E, Park Y B and Park H W 2018 Nano Lett. 18 6731 [10] Luo H, Li Q, Du K, Xu Z, Zhu H, Liu D, Cai L, Ghosh P and Qiu M 2019 Nano. Energy 65 103998 [11] Zhu Y N , Luo H, Yang C Y, Qin B, Ghosh P, Kaur S, Shen W D, Qiu M, Belov P and Li Q 2022 Light: Science & Applications 11 122 [12] Luo H, Zhu Y N, Xu Z Q, Hong Y, Ghosh P, Kaur S, Wu M B, Yang C Y, Qiu M and Li Q 2021 Nano Lett. 21 3879 [13] Weng Q, Wang X, Bando Y and Golberg D 2016 Chem. Soc. Rev. 45 3989 [14] Santin M, Motta A, Freddi G and Gannas M 1999 J. Biomed. Mater. Res. 46 382 [15] Jiang X F, Weng Q, Wang X B, Li X, Zhang J, Golberg D and Bando Y 2015 J. Mater. Sci. Technol. 31 589 [16] Weng Q, Wang X, Wang X, Bando Y and Golberg D 2016 Chem. Soc. Rev. 45 3989 [17] Chen J, Huang X, Zhu Y and Jiang P 2017 Adv. Funct. Mater. 27 1604754 [18] Gao T T, Yang Z, Chen C J, Li Y J, Fu K, Dai J Q, Hitz E M, Xie H, Liu B Y, Song J W, Yang B and Hu L B 2017 ACS Nano 11 11513 [19] Min B M, Lee G, Kim S H, Nam Y S, Lee T S and Park W H 2004 Biomaterials 25 1289 [20] Li H Q, Yu J S, Huang W, Shi W and Huang J 2014 Chin. Phys. B 23 038505 [21] Zhang R, Yu J S, Huang J, Chen G L, Liu X, Chen W, Wang X Q and Li C R 2018 Chin. Phys. B 27 055207 [22] Jing R, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S H, Kaplan D L, Buehler M J and Ling S J 2019 Chem. Rev. 119 12279 [23] Kun L, Li P and Fan Y B 2019 J. Mater. Chem. B 7 6890 [24] Zhou X H, Li D C, Wan S J, Cheng Q F and Ji B H 2019 Acta Mech. 230 1413 [25] Shi L H, Huang Y, Gao L and Cheng Y 2021 J. Elec. Mater. 50 592 [26] Ashal S, Sangappal Y and Sanjeev G 2016 J. Opt. 45 66 [27] Zhang Z M 2020 Nano/Microscale heat transfer, 2nd, edn. (Springer) [28] Zhao B, Guizal B, Zhang Z M, Fan S H and Antezza M 2017 Phys. Rev. B 95 245437 [29] Zhao B and Zhang Z M 2017 J. Heat Transfer 139 022701 [30] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172 [31] Alfaro-Mozaz F J, Rodrigo S G, Alonso-Gonzalez P, Velez S, Dolado I, Casanova F, Hueso L E, Martin-Moreno L, Hillenbrand R and Nikitin A Y 2019 Nat. Commun. 10 42 [32] Sihvola A, Tzarouchis D C, Oijala P Y, Wallen H and Kong B B 2018 Phys. Rev. B 98 235417 [33] Christensen T, Jauho A P, Wubs M and Mortensen N A 2015 Phys. Rev. B 91 125414 [34] Tzarouchis D and Sihvola A 2018 Appl. Sci. 8 184 [35] Li R J, Lin X, Lin S S, Liu X and Chen H S 2015 Opt. Lett. 40 1651 [36] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (Wiley) [37] Zhang K and Gao L 2017 Opt. Express 25 13747 [38] Huang Y, Xiao J J and Gao L 2015 Opt. Express 23 8818 [39] Zhang H R, Zhao J T, Xing T L, Lu S Z and Chen G Q 2019 Polymers 11 1774 [40] Wang Q, Lin S J, Yao Q Z, Li Q Y, Hu D B, Dai Q, Weitz D A, Kaplan D L, Buehler M J and Zhang Y Y 2020 ACS Materials Lett. 2 153 [41] Balcytis A, Ryu M, Wang X W, Novelli F, Seniutinas G, Du S, Wang X G, Li J L, Davis J, Appadoo D, Morikawa J and Juodkazis S 2017 Materials 10 356 [42] Zhang X A, Yu S J, Xu B B, Li M, Peng Z W, Wang Y X, Deng S L, Wu X J, Wu Z P, Ouyang M and Wang Y H 2019 Science 363 619 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|