Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107304    DOI: 10.1088/1674-1056/24/10/107304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array

Wang Xiao-Bo (王小波)a b, Li Yong (李勇)c, Yan Ling-Ling (闫玲玲)a, Li Xin-Jian (李新建)a
a Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China;
b College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China;
c Department of Physics, Pingdingshan University, Pingdingshan 467000, China
Abstract  A GaN/Si nanoheterojunction is prepared through growing GaN nanocrystallites (nc-GaN) on a silicon nanoporous pillar array (Si-NPA) by a chemical vapor deposition (CVD) technique at a relatively low temperature. The average size of nc-GaN is determined to be ~ 10 nm. The spectral measurements disclose that the photoluminescence (PL) from GaN/Si-NPA is composed of an ultraviolet (UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence (EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of GaN is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I-V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current (SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage.
Keywords:  GaN/Si-NPA      heterojunction      rectification      electroluminescence (EL)  
Received:  25 March 2015      Revised:  25 April 2015      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Ei (Rectification)  
  78.60.Fi (Electroluminescence)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176044).
Corresponding Authors:  Li Xin-Jian     E-mail:  lixj@zzu.edu.cn

Cite this article: 

Wang Xiao-Bo (王小波), Li Yong (李勇), Yan Ling-Ling (闫玲玲), Li Xin-Jian (李新建) Rectification and electroluminescence of nanostructured GaN/Si heterojunction based on silicon nanoporous pillar array 2015 Chin. Phys. B 24 107304

[1] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[2] Chang S J, Kuo C H, Su Y K, Wu L W, Sheu J K, Wen T C, Lai W C, Chen J F and Tsai J M 2002 IEEE J. Sel. Top. Quantum Electron. 8 744
[3] Nakamura S, Senoh M, Nagahama S-i, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M and Chocho K 1998 Appl. Phys. Lett. 72 211
[4] Okamoto K, Kashiwagi J, Tanaka T and Kubota M 2009 Appl. Phys. Lett. 94 071105
[5] Munoz E, Monroy E, Pau J L, Calle F, Omnes F and Gibart P 2001 J. Phys.: Condens. Matter 13 7115
[6] Pearton S J, Kang B S, Kim S, Ren F, Gila B P, Abernathy C R, Lin J and Chu S N G 2004 J. Phys.: Condens. Matter 16 R961
[7] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[8] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
[9] Lester S D, Ponce F A, Craford M G and Steigerwald D A 1995 Appl. Phys. Lett. 66 1249
[10] Kazior T E 2014 Philosoph. Trans. Series A, Math. Phys. Eng. Sci. 372 20130105
[11] Moutanabbir O and Gösele U 2010 Ann. Rev. Mater. Res. 40 469
[12] Funato M, Fujita S and Fujita S 2000 Appl. Phys. Lett. 77 3959
[13] Zhu D, Wallis D J and Humphreys C J 2013 Rep. Prog. Phys. 76 106501
[14] Hersee S D, Zubia D, Sun X Y, Bommena R, Fairchild M, Zhang S, Burckel D, Frauenglass A and Brueck S R J 2002 IEEE J. Quantum Electron. 38 1017
[15] Tang Y B, Bo X H, Lee C S, Cong H T, Cheng H M, Chen Z H, Zhang W J, Bello I and Lee S T 2008 Adv. Funct. Mater. 18 3515
[16] Manna S, Ashok V D and De S K 2010 ACS Appl. Mater. Interf. 2 3539
[17] Tang Y B, Chen Z H, Song H S, Lee C S, Cong H T, Cheng H M, Zhang W J, Bello I and Lee S T 2008 Nano Lett. 8 4191
[18] Saron K M A and Hashim M R 2013 Superlattices and Microstructures 56 55
[19] Li F, Lee S H, You J H, Kim T W, Lee K H, Lee J Y, Kwon Y H and Kang T W 2010 J. Cryst. Growth 312 2320
[20] Xu H J and Li X J 2008 Opt. Express 16 2933
[21] Li X J, Chen S J and Feng C Y 2007 Sen. Actuat. B-Chem. 123 461
[22] Li X J and Jiang W F 2007 Nanotechnology 18 065203
[23] Feng F, Zhi G, Jia H S, Cheng L, Tian Y T and Li X J 2009 Nanotechnology 20 295501
[24] He C, Han C B, Xu Y R and Li X J 2011 J. Appl. Phys. 110 094316
[25] Han C B, He C and Li X J 2011 Adv. Mater. 23 4811
[26] Li M, Li C, Wang F and Zhang W 2006 Intermetallics 14 826
[27] Park E, Shim S, Ha R, Oh E, Lee B W and Choi H J 2011 Mater. Lett. 65 2458
[28] Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301
[29] Zhang X B, Taliercio T, Kolliakos S and Lefebvre P 2001 J. Phys.: Condens. Matter 13 7053
[30] Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
[31] Sheu J K, Su Y K, Chi G C, Jou M J and Chang C M 1998 Appl. Phys. Lett. 72 3317
[32] Sugiyama K, Ishii H, Ouchi Y and Seki K 2000 J. Appl. Phys. 87 295
[33] Sheu J K, Su Y K, Chi G C, Jou M J, Liu C C and Chang C M 1999 Solid State Electron. 43 2081
[34] Foresi J S and Moustakas T D 1993 Appl. Phys. Lett. 62 2859
[35] Elhouichet H, Moadhen A, Oueslati M, Romdhane S, Roger J A and Bouchriha H 2005 Phys. Status Solidi C 2 3349
[36] Hall H P, Awaah M A and Das K 2004 Phys. Status Solidi 201 522
[37] Pankove J I and Schade H 1974 Appl. Phys. Lett. 25 53
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[11] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[12] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[13] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[14] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[15] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
No Suggested Reading articles found!