|
|
High quality sub-monolayer, monolayer, and bilayer graphene on Ru(0001) |
Xu Wen-Yan (徐文焱)a b, Huang Li (黄立)a b, Que Yan-De (阙炎德)a b, Li En (李恩)a b, Zhang Hai-Gang (张海刚)a b, Lin Xiao (林晓)b a, Wang Ye-Liang (王业亮)a b, Du Shi-Xuan (杜世萱)a b, Gao Hong-Jun (高鸿钧)a b |
a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract High quality sub-monolayer, monolayer, and bilayer graphene were grown on Ru(0001). For the sub-monolayer graphene, the size of graphene islands with zigzag edges can be controlled by the dose of ethylene exposure. By increasing the dose of ethylene to 100 Langmuir at a high substrate temperature (800℃), high quality single-crystalline monolayer graphene was synthesized on Ru(0001). High quality bilayer graphene was formed by further increasing the dose of ethylene while reducing the cooling rate to 5℃/min. Raman spectroscopy revealed the vibrational states of graphene, G and 2D peaks appeared only in the bilayer graphene, which demonstrates that it behaves as the intrinsic graphene. Our present work affords methods to produce high quality sub-monolayer, monolayer, and bilayer graphene, both for basic research and applications.
|
Received: 29 April 2014
Revised: 06 May 2014
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
68.65.Pq
|
(Graphene films)
|
|
87.64.Dz
|
(Scanning tunneling and atomic force microscopy)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600 and 2011CB932700) and the National Natural Science Foundation of China (Grant Nos. 61222112 and 11334006). |
Corresponding Authors:
Lin Xiao, Wang Ye-Liang, Gao Hong-Jun
E-mail: xlin@ucas.ac.cn;ylwang@iphy.ac.cn;hjgao@iphy.ac.cn
|
Cite this article:
Xu Wen-Yan (徐文焱), Huang Li (黄立), Que Yan-De (阙炎德), Li En (李恩), Zhang Hai-Gang (张海刚), Lin Xiao (林晓), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧) High quality sub-monolayer, monolayer, and bilayer graphene on Ru(0001) 2014 Chin. Phys. B 23 098101
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Xu D, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
|
[4] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Eilas D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
|
[5] |
Chen J H, Jang C, Xiao S D, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
|
[6] |
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
|
[7] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[8] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[9] |
Marchini S, Gunther S and Wintterlin J 2007 Phys. Rev. B 76 075429
|
[10] |
Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
|
[11] |
Loginova E, Bartelt N C, Feibelman P J and McCarty K F 2008 New J. Phys. 10 093026.
|
[12] |
Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
|
[13] |
de Parga A L V, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
|
[14] |
Sutter E, Acharya D P, Sadowski J T and Sutter P 2009 Appl. Phys. Lett. 94 133101
|
[15] |
McCarty K F, Feibelman P J, Loginova E and Bartelt N C 2009 Carbon 47 1806
|
[16] |
Borca B, Calleja F, Hinarejos J J, de Parga A L V and Miranda R J J 2009 J. Phys.: Condens. Matter 21 134002
|
[17] |
Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
|
[18] |
Zhang H, Fu Q, Cui Y, Tan D and Bao X 2009 J. Phys. Chem. C 113 8296
|
[19] |
Farias D, Shikin A M, Rieder K H and Dedkov Y S J 1999 J. Phys.: Condens. Matter 11 8453
|
[20] |
Shikin A M, Prudnikova G V, Adamchuk V K, Moresco F and Rieder K H 2000 Phys. Rev. B 62 13202
|
[21] |
Starodubov A G, Medvetskii M A, Shikin A M and Adamchuk V K 2004 Phys. Solid State 46 1340
|
[22] |
Dedkov Y S, Fonin M, Rudiger U and Laubschat C 2008 Appl. Phys. Lett. 93 022509
|
[23] |
Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
|
[24] |
Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M and Yamamoto S 2004 Surf. Sci. 560 183
|
[25] |
Starr D E, Pazhetnov E M, Stadnichenko A I, Boronin A I and Shaikhutdinov S K 2006 Surf. Sci. 600 2688
|
[26] |
Klusek Z, Kozlowski W, Waqar Z, Datta S, Burnell-Gray J S, Makarenko I V, Gall N R, Rutkov E V, Tontegode A Y and Titkov A N 2005 Appl. Surf. Sci. 252 1221
|
[27] |
N'Diaye A T, Bleikamp S, Feibelman P J and Michely T 2006 Phys. Rev. Lett. 97 215501
|
[28] |
N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
|
[29] |
Coraux J, N'Diaye A T, Busse C and Michely T 2008 Nano Lett. 8 565
|
[30] |
Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F J M Z, van Gastei R, Poelsema B and Michely T 2009 New J. Phys. 11 023006
|
[31] |
Wang W R, Liang C, Li T, Yang H, Lu N and Wang Y L 2013 Chin. Phys. Lett. 30 028102
|
[32] |
Feng D J, Huang W Y, Jiang S Z, Ji W and Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese)
|
[33] |
Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Castro Neto A H and Gao H J 2012 Appl. Phys. Lett. 100 093101
|
[34] |
Huang L, Xu W Y, Que Y D, Pan Y, Gao M, Pan L D, Guo H M, Wang Y L, Du S X and Gao H J 2012 Chin. Phys. B 21 088102
|
[35] |
Wintterlin J and Bocquet M L 2009 Surf. Sci. 603 1841
|
[36] |
Martoccia D, Willmott P R, Brugger T, Bjorck M, Gunther S, Schleputz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W and Greber T 2008 Phys. Rev. Lett. 101 126102
|
[37] |
Moritz W, Wang B, Bocquet M L, Brugger T, Greber T, Wintterlin J and Gunther S 2010 Phys. Rev. Lett. 104 136102
|
[38] |
Papagno M, Pacile' D, Topwal D, Moras P, Sheverdyaeva P M, Natterer F D, Lehnert A, Rusponi S, Dubout Q, Calleja F, Frantzeskakis E, Pons S, Fujii J, Vobornik I, Grioni M, Carbone C and Brune H 2012 ACS Nano 6 9299
|
[39] |
Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X and Gao H J 2014 Appl. Phys. Lett. 104 093110
|
[40] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[41] |
Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
|
[42] |
Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
|
[43] |
Wang Y, Ni Z, Yu T, Shen Z X, Wang H, Wu Y, Chen W and Wee A T S 2008 J. Phys. Chem. 100 10637
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|