Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088801    DOI: 10.1088/1674-1056/23/8/088801
Special Issue: INVITED REVIEW — International Conference on Nanoscience & Technology, China 2013
INVITED REVIEW—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis

Zhang Shuang-Shuang (张双双)a b, Liu Rong-Ji (刘荣基)a, Zhang Guang-Jin (张光晋)a, Gu Zhan-Jun (谷战军)c
a Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also properties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability. Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review, we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties.
Keywords:  carbon nanotube      graphene      polyoxometalate      photo-electro-catalysis  
Received:  04 September 2013      Revised:  14 March 2014      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21371173) and the National Basic Research Program of China (973 Program) (Grant No. 2012CB932504).
Corresponding Authors:  Zhang Guang-Jin     E-mail:  zhanggj@home.ipe.ac.cn

Cite this article: 

Zhang Shuang-Shuang (张双双), Liu Rong-Ji (刘荣基), Zhang Guang-Jin (张光晋), Gu Zhan-Jun (谷战军) Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis 2014 Chin. Phys. B 23 088801

[1] Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Science 287 637
[2] Rao C N R, Sood A K, Subrahmanyam K S and Govindaraj A 2009 Angewandte Chemie International Edition 48 7752
[3] Nanot S, Hároz E H, Kim J H, Hauge R H and Kono J 2012 Adv. Mater. 24 4977
[4] Sun X, Sun H, Li H and Peng H 2013 Adv. Mater. 25 5153
[5] Byrne M T and Gun'ko Y K 2010 Adv. Mater. 22 1672
[6] Jeon I Y, Choi H J, Ju M J, Choi I T, Lim K, Ko J, Kim H K, Kim J C, Lee J J, Shin D, Jung S M, Seo J M, Kim M J, Park N, Dai L and Baek J B 2013 Sci. Rep. 3 doi: 10.1038/srep02260
[7] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T and Dai H 2011 Nat. Mater. 10 780
[8] Wang S, Yu D and Dai L 2011 J. Am. Chem. Soc. 133 5182
[9] Reiss G and Hütten A 2005 Nat. Mater. 4 725
[10] Singamaneni S, Bliznyuk V N, Binek C and Tsymbal E Y 2011 J. Mater. Chem. 21 16819
[11] Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi D M and Prato M 2007 J. Mater. Chem. 17 2679
[12] Sau T K, Rogach A L, Jäckel F, Klar T A and Feldmann J 2010 Adv. Mater. 22 1805
[13] Kong L, Lu X and Zhang W 2008 J. Solid State Chem. 181 628
[14] Zhu M and Diao G 2011 Nanoscale 3 2748
[15] Quinn B M, Dekker C and Lemay S G 2005 J. Am. Chem. Soc. 127 6146
[16] Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G and Xin Q 2003 J. Phys. Chem. B 107 6292
[17] Kongkanand A, Vinodgopal K, Kuwabata S and Kamat P V 2006 J. Phys. Chem. B 110 16185
[18] Li S, Yu X, Zhang G, Ma Y, Yao J, Keita B, Louis N and Zhao H 2011 J. Mater. Chem. 21 2282
[19] Li S, Yu X, Zhang G, Ma Y, Yao J and De Oliveira P 2011 Carbon 49 1906
[20] Liu R, Li S, Yu X, Zhang G, Ma Y and Yao J 2011 J. Mater. Chem. 21 14917
[21] Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J, Keita B, Nadjo L and Zhi L 2012 Small 8 1398
[22] Liu R, Yu X, Zhang G, Zhang S, Cao H, Dolbecq A, Mialane P, Keita B and Zhi L 2013 J. Mater. Chem. A 1 11961
[23] Liu R, Li S, Zhang G, Dolbecq A, Mialane P and Keita B 2014 J. Cluster Sci. 25 711
[24] Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J and Zhi L 2012 J. Mater. Chem. 22 3319
[25] Pradeep C P, Long D L and Cronin L 2010 Dalton Transactions 39 9443
[26] Guo Y and Hu C 2007 J. Mol. Catalysis A: Chemical 262 136
[27] Dolbecq A, Mialane P, Secheresse F, Keita B and Nadjo L 2012 Chem. Commun. 48 8299
[28] Keita B and Nadjo L 2007 J. Mol. Catalysis A: Chemical 262 190
[29] Kirubaharan C J, Kalpana D, Lee Y S, Kim A, Yoo D J, Nahm K S and Kumar G G 2012 Ind. & Eng. Chem. Res. 51 7441
[30] Gao J, Liang G, Cheung J S, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu E X and Xu B 2008 J. Am. Chem. Soc. 130 11828
[31] Xu Z, Hou Y and Sun S 2007 J. Am. Chem. Soc. 129 8698
[32] Graeser M, Pippel E, Greiner A and Wendorff J H 2007 Macromolecules 40 6032
[33] Krämer J, Redel E, Thomann R and Janiak C 2008 Organometallics 27 1976
[34] Gonzalez C M, Liu Y and Scaiano J 2009 J. Phys. Chem. C 113 11861
[35] Hong G H and Kang S W 2012 Ind. & Eng. Chem. Res. 52 794
[36] Liu T, Zhang Y, Shao H and Li X 2003 Langmuir 19 7569
[37] Zhang G, Keita B, Dolbecq A, Mialane P, Sécheresse F, Miserque F and Nadjo L 2007 Chem. Mater. 19 5821
[38] Keita B, Zhang G, Dolbecq A, Mialane P, Sécheresse F, Miserque F and Nadjo L 2007 J. Phys. Chem. C 111 8145
[39] Zhang G, Keita B, Biboum R N, Miserque F, Berthet P, Dolbecq A, Mialane P, Catala L and Nadjo L 2009 J. Mater. Chem. 19 8639
[40] Biboum R N, Keita B, Franger S, Nanseu Njiki C P, Zhang G, Zhang J, Liu T, Mbomekalle I M and Nadjo L 2010 Materials 3 741
[41] Keita B, Liu T and Nadjo L 2009 J. Mater. Chem. 19 19
[42] Marcí G, García-López E I and Palmisano L 2014 Eur. J. Inorg. Chem. 2014 21
[43] Xing X, Liu R, Yu X, Zhang G, Cao H, Yao J, Ren B, Jiang Z and Zhao H 2013 J. Mater. Chem. A 1 1488
[44] Gewirth A A and Thorum M S 2010 Inorg. Chem. 49 3557
[45] Yang Y and Zhou Y 1995 J. Electroanalyt. Chem. 397 271
[46] Blizanac B, Ross P and Markovic N 2007 Electrochimica Acta 52 2264
[47] Lee C L, Chiou H P, Syu C M and Wu C C 2010 Electrochem. Commun. 12 1609
[48] Lee C L, Chiou H P, Syu C M, Liu C R, Yang C C and Syu C C 2011 Int. J. Hydrogen Energy 36 12706
[49] Wang S, Yu D, Dai L, Chang D W and Baek J B 2011 ACS Nano 5 6202
[50] Zheng F, Mu G, Zhang Z, Shen Y, Zhao M and Pang G 2012 Mater. Lett. 68 453
[51] Yang Z, Zhou X, Nie H, Yao Z and Huang S 2011 ACS Appl. Mater. & Interfaces 3 2601
[52] Choi H C, Shim M, Bangsaruntip S and Dai H 2002 J. Am. Chem. Soc. 124 9058
[53] Qu L and Dai L 2005 J. Am. Chem. Soc. 127 10806
[54] Chen W, Fan Z, Pan X and Bao X 2008 J. Am. Chem. Soc. 130 9414
[55] Wasmus S and Küver A 1999 J. Electroanal. Chem. 461 14
[56] Wu W and Lin Y T 2010 Ind. & Eng. Chem. Res. 49 5725
[57] Lin Y, Cui X, Yen C H and Wai C M 2005 Langmuir 21 11474
[58] Lin Y, Cui X, Yen C and Wai C M 2005 J. Phys. Chem. B 109 14410
[59] Guo S, Dong S and Wang E 2010 Adv. Mater. 22 1269
[60] Zheng S F, Hu J S, Zhong L S, Wan L J and Song W G 2007 J. Phys. Chem. C 111 11174
[61] Huang C, Li C and Shi G 2012 Energy & Environ. Sci. 5 8848
[62] Chang H and Wu H 2012 Adv. Func. Mater. 23 1984
[63] James D K and Tour J M 2012 Accounts Chem. Res. 46 2307
[64] Kostowskyj M, Kirk D and Thorpe S 2010 Int. J. Hydrogen Energy 35 5666
[65] Kostowskyj M, Gilliam R, Kirk D and Thorpe S 2008 Int. J. Hydrogen Energy 33 5773
[66] Zhou Y, Ma R, Ebina Y, Takada K and Sasaki T 2006 Chem. Mater. 18 1235
[67] Chen W, Cai S, Ren Q Q, Wen W and Zhao Y D 2012 Analyst. 137 49
[68] Pang H, Gao F, Chen Q, Liu R and Lu Q 2012 Dalton Transactions 41 5862
[69] Li W, Kuai L, Qin Q and Geng B 2013 J. Mater. Chem. A 1 7111
[70] Nohra B, El Moll H, Rodriguez Albelo L M, Mialane P, Marrot J, Mellot-Draznieks C, O'Keeffe M, Ngo Biboum R, Lemaire J and Keita B 2011 J. Am. Chem. Soc. 133 13363
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[14] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!