INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Epitaxial growth of Ge1-xSnx films with x up to 0.14 grown on Ge (00l) at low temperature |
Tao Ping (陶平)a, Huang Lei (黄磊)a, Cheng H Hb, Wang Huan-Hua (王焕华)c, Wu Xiao-Shan (吴小山)a |
a Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China; b National Taiwan University, Center for Condensed Matter Sciences, Taipei 106, Taiwan, China; c Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Beijing 100049, China |
|
|
Abstract We characterize the structures of Ge1-xSnx films with x up to 0.14 grown on Ge (00l) by molecular-beam epitaxy at low temperature. The results show that Ge1-xSnx films are fully strained even at high Sn composition. The in-plane lattice parameters remain exactly the same as that of the substrate. Depth sensitivity analysis of the lattice parameters indicates that the strains of the epitaxial films are all in homogeneity. The films are fully strained. Poisson ratios, the force constants for the bonds between Ge and Sn are estimated and discussed in the present paper. Raman results show Ge-Ge, Ge-Sn, Sn-Sn vibrational modes. The Sn-Sn bond aggregation may respond to the high quality of our films. The fully strained epitaxy films with high content of Sn may be useful in designing the high quality GeSn films.
|
Received: 09 November 2013
Revised: 09 March 2014
Accepted manuscript online:
|
PACS:
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
68.55.ag
|
(Semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274153, 11204124, and 51202108) and the National Key Projects for Basic Research of China (Grant No. 2010CB923404). |
Corresponding Authors:
Wu Xiao-Shan
E-mail: xswu@nju.edu.cn
|
Cite this article:
Tao Ping (陶平), Huang Lei (黄磊), Cheng H H, Wang Huan-Hua (王焕华), Wu Xiao-Shan (吴小山) Epitaxial growth of Ge1-xSnx films with x up to 0.14 grown on Ge (00l) at low temperature 2014 Chin. Phys. B 23 088112
|
[1] |
Pe'rez Ladro'n de Guevara H, Rodriguez A G, Navarro-Contreras H and Vidal M A 2003 Appl. Phys. Lett. 83 4942
|
[2] |
Su S J, Wang W, Zhang G Z, Hu W X, Bai A Q, Xue C L, Zuo Y H, Cheng B W and Wang Q M 2011 Acta Phys. Sin. 60 028101 (in Chinese)
|
[3] |
Nakamura Yoshiaki, Masada Akiko, lchikawa Masakazu 2007 Appl. Phys. Lett. 91 013109
|
[4] |
Xing Y H, Han J, Deng J, Li J J and Shen G D 2009 Acta Phys. Sin. 58 2644 (in Chinese)
|
[5] |
Rojas-Lopez M, Navarro-Contreras H, Desjardins P, Gurdal O, Taylor N, Carlsson J R A and Greene J E 1998 J. Appl. Phys. 84 2219
|
[6] |
Si J X, Wu H Z, Xu T N, Cao C F and Huang Z C 2005 Chin. Phys. Lett. 22 2353
|
[7] |
Bratland K A, Foo Y L, Spila T, Seo H S, Haasch R T, Desjardins P and Greene J E 2005 J. Appl. Phys. 97 044904
|
[8] |
Bauer M, Taraci J, Tolle J, Chizmeshya A V G, Zollner S, Smith David J, Menendez J, Hu Changwu and Kouvetakis J 2002 Appl. Phys. Lett. 81 2992
|
[9] |
Taylor M E, He G, Atwater Harry A and Polman A 1996 J. Appl. Phys. 80 4384
|
[10] |
Gurdal O, Desjardins P, Carlsson J R A and Taylor N, Radamson H H, Sundgren J E and Greene J E 1998 J. Appl. Phys. 83 162
|
[11] |
Yu I S, Wu T H, Wu K Y, Cheng H H, Mashanov V I, Nikiforov A I, Pchelyakov O P and Wu X S 2011 AIP Advances 1 042118
|
[12] |
Xue S W, Zu X T, Shao L X, Yuan Z L, Xiang X and Deng H 2008 Chin. Phys. B 17 2240
|
[13] |
Zhong W W, Liu F M, Cai L G, Zhou C C, Ding P and Zhang H 2010 Chin. Phys. B 19 107306
|
[14] |
Liao Y P, Shao X B, Gao F L, Luo W S, Wu Y, Fu G Z, Jing H and Ma K 2006 Chin. Phys. 15 1310
|
[15] |
Chroneos A, Jiang C, Grimes R W, Schwingenschlogl U and Bracht H 2009 Appl. Phys. Lett. 94 252104
|
[16] |
Kasper E, Schuh A, Bauer G, Hollander B and Kibbel H 1995 J. Cryst. Growth 157 68
|
[17] |
Hull R, Bean J C, Peticolas L and Bahnck D 1991 Appl. Phys. Lett. 59 964
|
[18] |
Shaleev M V, Novikov A V, Yurasov D V, Hartmann J M, Kuznetsov O A, Lobanov D N and KrasilniK Z F 2012 Appl. Phys. Lett. 101 151601
|
[19] |
Bharathan Jayesh, Narayan Jagdish, Rozgonyi George and Bulman Gary E 2013 J. Electron. Mater. 42 40
|
[20] |
Zhai Z Y, Wu X S, Jiang Z S, Hao J H, Gao J, Cai Y F and Pan Y G 2006 Appl. Phys. Lett. 89 262902
|
[21] |
Zhai Z Y, Wu X S, Cai H L, Lu X M, Hao J H, Gao J, Tan W S, Jia Q J, Wang H H and Wang Y Z 2009 J. Phys. D: Appl. Phys. 42 105307
|
[22] |
Ormeci Alim, Aydemir Umut and Somer Mehmet 2011 Z. Anorg. Allg. Chem. 637 907
|
[23] |
Zheng W T and Sundgren J E 1998 Chin. Phys. Lett. 15 120
|
[24] |
Li X, Tang Z A, Ma G J, Wu Z M and Deng X L 2003 Chin. Phys. Lett. 20 692
|
[25] |
Stefanov S, Conde J C, Benedetti A, Serra C, Werner J, Oehme M, Schulze J, Buca D, Hollander B, Mantl S and Chiussi S 2012 Appl. Phys. Lett. 100 104101
|
[26] |
Oehme M, Schmid M, Kaschel M, Gollhofer M, Widmann D, Kasper E and Schulze J 2012 Appl. Phys. Lett. 101 141110
|
[27] |
Su S J, Wei W, Cheng B W, Hu W X, Zhang G Z, Xue C L, Zuo Y H and Wang Q M 2011 Solid State Commun. 151 647
|
[28] |
Kil Y H, Yang H D, Yang J H, Kim J H, Jung J Y, Kang S, Jeong T S, Kim T S and Shim K H 2013 J. Korean Phys. Soc. 63 1034
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|