CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Epitaxial Bi2Sr2CuOy thin films as p-type transparent conductors |
Chen Zhou(周臣)1,2, Wang-Ping Cheng(程王平)1,2, Yuan-Di He(何媛娣)1,2, Cheng Shao(邵成)1, Ling Hu(胡令)1, Ren-Huai Wei(魏仁怀)1,†, Jing-Gang Qin(秦经刚)3,‡, Wen-Hai Song(宋文海)1,§, Xue-Bin Zhu(朱雪斌)1, Chuan-Bing Cai(蔡传兵)4, and Yu-Ping Sun(孙玉平)1,5,6 |
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2. University of Science and Technology of China, Hefei 230026, China; 3. Institute of Plasma Physics, Chinese Academy of Sciences, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 4. Physics Department, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China; 5. High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 6. Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Development of p-type transparent conducting thin films is tireless due to the trade-off issue between optical transparency and conductivity. The rarely concerned low normal state resistance makes Bi-based superconducting cuprates the potential hole-type transparent conductors, which have been realized in Bi2Sr2CaCu2Oy thin films. In this study, epitaxial superconducting Bi2Sr2CuOy and Bi2Sr1.8Nd0.2CuOy thin films with superior normal state conductivity are proposed as p-type transparent conductors. It is found that the Bi2Sr1.8Nd0.2CuOy thin film with thickness 15 nm shows an average visible transmittance of 65% and room-temperature sheet resistance of 650 Ω/sq. The results further demonstrate that Bi-based cuprate superconductors can be regarded as potential p-type transparent conductors for future optoelectronic applications.
|
Received: 16 March 2022
Revised: 11 April 2022
Accepted manuscript online:
|
PACS:
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
81.20.Fw
|
(Sol-gel processing, precipitation)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604337). |
Corresponding Authors:
Ren-Huai Wei, Jing-Gang Qin, Xue-Bin Zhu
E-mail: rhwei@issp.ac.cn;qinjg@ipp.ac.cn;xbzhu@issp.ac.cn
|
Cite this article:
Chen Zhou(周臣), Wang-Ping Cheng(程王平), Yuan-Di He(何媛娣), Cheng Shao(邵成), Ling Hu(胡令), Ren-Huai Wei(魏仁怀), Jing-Gang Qin(秦经刚), Wen-Hai Song(宋文海), Xue-Bin Zhu(朱雪斌), Chuan-Bing Cai(蔡传兵), and Yu-Ping Sun(孙玉平) Epitaxial Bi2Sr2CuOy thin films as p-type transparent conductors 2022 Chin. Phys. B 31 107305
|
[1] Wang Z, Nayak P K, Caraveo-Frescas J A and Alshareef H N 2016 Adv. Mater. 28 3831 [2] Beyer W, Hupkes J and Stiebig H 2007 Thin Solid Films 516 147 [3] Ohta H and Hosono H 2004 Mater. Today 7 42 [4] Banerjee A and Chattopadhyay K 2005 Prog. Cryst. Growth Charact. Mater. 50 52 [5] Kawazoe H, Yanagi H, Ueda K and Hosono H 2000 MRS Bull. 25 28 [6] Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939 [7] Nagarajan R, Draeseke A D, Sleight A W and Tate J 2001 J. Appl. Phys. 89 8022 [8] Jayaraj M K, Draeseke A D, Tate J and Sleight A W 2001 Thin Solid Films 397 244 [9] Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M and Hirano M 2001 J. Appl. Phys. 89 1790 [10] Duan N and Sleight A W 2000 Appl. Phys. Lett. 77 1325 [11] Snure M and Tiwari A 2007 Appl. Phys. Lett. 91 092123 [12] Yanagi H, Hase T, Ibuki S, Ueda K and Hosono H 2001 Appl. Phys. Lett. 78 1583 [13] Freeman A J, Poeppelmeier K R, Mason T O, Chang R P H and Marks T J 2000 MRS Bull. 25 45 [14] Zhang X, Zhang L, Perkins J D and Zunger A 2015 Phys. Rev. Lett. 115 176602 [15] Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H T, Eaton C, Zheng Y, Brahlek M, Haneef H F, Podraza N J, Chan M H W, Gopalan V, Rabe K M and Engel-Herbert R 2016 Nat. Mater. 15 204 [16] Ha Y and Lee S 2020 Adv. Funct. Mater. 30 2001489 [17] Stoner J L, Murgatroyd P A E, O'Sullivan M, Dyer M S, Man-ning T D, Claridge J B, Rosseinsky M J and Alaria J 2019 Adv. Funct. Mater. 29 1808609 [18] Wells M P, Zou B, Doiron B G, Kilmurray R, Mihai A P, Oulton R F M, Gubeljak P, Ormandy K L, Mallia G, Harrison N M, Cohen L F, Maier S A, Alford N M N and Petrov P K 2017 Adv. Opt. Mater. 5 1700622 [19] Park Y, Roth J, Oka D, Hirose Y, Hasegawa T, Paul A, Pogreb-nyakov A, Gopalan V, Birol T and Engel-Herbert R 2020 Commun. Phys. 3 102 [20] Asmara T C, Wan D, Zhao Y, Majidi M A, Nelson C T, Scott M C, Cai Y, Yan B, Schmidt D, Yang M, Zhu T, Trevisanutto P E, Motapothula M R, Feng Y P, Breese M B H, Sherburne M, Asta M, Minor A, Venkatesan T and Rusydi A 2017 Nat. Commun. 8 15271 [21] Wan D Y, Zhao Y L, Cai Y, Asmara T C, Huang Z, Chen J Q, Hong J, Yin S M, Nelson C T, Motapothula M R, Yan B X, Xiang D, Chi X, Zheng H, Chen W, Xu R, Ariando A R, Minor A M, Breese M B H, Sherburne M, Asta M, Xu Q H and Venkatesan T 2017 Nat. Commun. 8 15070 [22] Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kieft R F, Kreitzman S R, Mulhern P, Riseman T M, LL Williams D, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J and Yu X H 1989 Phys. Rev. Lett. 62 2317 [23] Hou X H, Li J Q, Li J W, Xiang J W, Wu F, Huang Y Z and Zhao Z X 1994 Phys. Rev. B 50 496 [24] Roesera H P, Hetfleischa F, Huberb F M, Von Schoenermarka M F, Steppera M, Moritza A and Nikoghosyanc A S 2008 Acta Astronaut. 63 1372 [25] Orlando M T D, Rouver A N, Rocha J R and Cavichini A S 2018 Phys. Lett. A 382 1486 [26] Maeda A, Hase M, Tsukada I, Noda K, Takebayashi S and Uchinokura K 1990 Phys. Rev. B 41 6418 [27] Wei R H, Zhang L, Hu L, Tang X W, Yang J, Dai J M, Song W H, Zhu X B and Sun Y P 2018 Appl. Phys. Lett. 112 251109 [28] Forró L, Lukatela J and Keszei B 1990 Solid State Commun. 73 501 [29] Chen X H, Yu M, Ruan K Q, Li S Y, Gui Z, Zhang G C and Cao L Z 1998 Phys. Rev. B 58 14219 [30] Maljuk A and Lin C T 2016 Crystals 6 62 [31] Vedeneev S I and Maude D K 2004 Phys. Rev. B 70 184524 [32] Ono S and Ando Y 2003 Phys. Rev. B 67 104512 [33] Sales B C and Chakoumakos B C 1991 Phys. Rev. B 43 12994 [34] Hu L, Zhao M L, Liang S, Song D P, Wei R H, Tang X W, Song W H, Dai J M, He G, Zhang C J, Zhu X B and Sun Y P 2019 Phys. Rev. Appl. 12 044035 [35] Zhang K H L, Du Y, Papadogianni A, Bierwagen O, Sallis S, Piper L F J, Bowden M E, Shutthanandan V, Sushko P V and Chambers S A 2015 Adv. Mater. 27 5191 [36] Wei R H, Tang X W, Hui Z Z, Luo X, Dai J M, Yang J, Song W H, Chen L, Zhu X G, Zhu X B and Sun Y P 2015 Appl. Phys. Lett. 106 101906 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|