|
|
Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30° |
Yan-Ling Xiong(熊艳翎)1, Jia-Qi Guan(关佳其)1, Rui-Feng Wang(汪瑞峰)1, Can-Li Song(宋灿立)1,2,†, Xu-Cun Ma(马旭村)1,2,‡, and Qi-Kun Xue(薛其坤)1,2,3,4 |
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 Frontier Science Center for Quantum Information, Beijing 100084, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Unusual quantum phenomena usually emerge upon doping Mott insulators. Using a molecular beam epitaxy system integrated with cryogenic scanning tunneling microscope, we investigate the electronic structure of a modulation-doped Mott insulator Sn/Si(111)-($\sqrt{3}\times \sqrt{3})R$30$^\circ$. In underdoped regions, we observe a universal pseudogap opening around the Fermi level, which changes little with the applied magnetic field and the occurrence of Sn vacancies. The pseudogap gets smeared out at elevated temperatures and alters in size with the spatial confinement of the Mott insulating phase. Our findings, along with the previously observed superconductivity at a higher doping level, are highly reminiscent of the electronic phase diagram in the doped copper oxide compounds.
|
Received: 01 March 2022
Revised: 28 March 2022
Accepted manuscript online: 11 April 2022
|
PACS:
|
74.72.Kf
|
(Pseudogap regime)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074092 and 11604366) and the National Key R&D Program of China (Grant No. 2018YFA0305603). |
Corresponding Authors:
Can-Li Song, Xu-Cun Ma
E-mail: clsong07@mail.tsinghua.edu.cn;xucunma@mail.tsinghua.edu.cn
|
Cite this article:
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤) Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30° 2022 Chin. Phys. B 31 067401
|
[1] Mott N F 1961 Philos. Mag. 6 287 [2] Mott N F 1982 Proc. R. Soc. London Ser. A 382 1 [3] Belitz D and Kirkpatrick T R 1994 Rev. Mod. Phys. 66 261 [4] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [5] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61 [6] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353 [7] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 [8] Renner C, Revaz B, Genoud J Y, Kadowaki K and Fischer O 1998 Phys. Rev. Lett. 80 149 [9] Chen Q J, Stajic J, Tan S and Levin K 2005 Phys. Rep. 412 1 [10] Geshkenbein V B, Ioffe L B and Larkin A I 1997 Phys. Rev. B 55 3173 [11] Loret B, Auvray N, Gallais Y, Cazayous M, Forget A, Colson D, Julien M H, Paul I, Civelli M and Sacuto A 2019 Nat. Phys. 15 771 [12] Caprara S, Di Castro C, Seibold G and Grilli M 2017 Phys. Rev. B 95 224511 [13] Kampf A P and Schrieffer J R 1990 Phys. Rev. B 42 7967 [14] Zhang T, Cheng Peng, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104 [15] Uchihashi T, Mishra P, Aono M and Nakayama T 2011 Phys. Rev. Lett. 107 207001 [16] Nakamura T, Kim H, Ichinokura S, Takayama A, Zotov A V, Saranin A A, Hasegawa Y and Hasegawa S 2018 Phys. Rev. B 98 134505 [17] Özer M M, Thompson J R and Weitering H H 2006 Nat. Phys. 2 173 [18] Matetskiy A V, Denisov N V, Hsing C R, Wei C M, Zotov A V and Saranin A A 2019 J. Phys. Condens. Mat. 31 115402 [19] Carpinelli J M, Weitering H H, Plummer E W and Stumpf R 1996 Nature 381 398 [20] Zhou Y H, Zhang P C, Fang Y M, Wu S Q and Zhu Z Z 2017 Mater. Chem. Phys. 199 225 [21] Carpinelli J M, Weitering H H, Bartkowiak M, Stumpf R and Plummer E W 1997 Phys. Rev. Lett. 79 2859 [22] Morikawa H, Matsuda I and Hasegawa S 2002 Phys. Rev. Lett. 65 201308(R) [23] Ottaviano L, Crivellari M, Lozzi L and Santucci S 2000 Surf. Sci. 445 L41 [24] Profeta G and Tosatti E 2007 Phys. Rev. Lett. 98 086401 [25] Modesti S, Petaccia L, Ceballos G, Vobornik I, Panaccione G, Rossi G, Ottaviano L, Larciprete R, Lizzit S and Goldoni A 2007 Phys. Rev. Lett. 98 126401 [26] Odobescu A B, Maizlakh A A, Fedotov N I and Zaitsev-Zotov S V 2017 Phys. Rev. B 95 195151 [27] Wu X F, Ming F F, Smith T S, Liu G W, Ye F, Wang K Dong, Johnston S and Weitering H H 2020 Phys. Rev. lett. 125 117001 [28] Hsu L and Walukiewicz W 1997 Phys. Rev. B 56 1520 [29] Störmer H L and Tsang W T 1980 Appl. Phys. Lett. 36 685 [30] People R, Bean J C, Lang D V, Sergent A M, Störmer H L, Wecht K W, Lynch R T and Baldwin K 1984 Appl. Phys. Lett. 45 1231 [31] Zhong Y, Wang Y, Han S, Lv Y F, Wang W L, Zhang D, Ding H, Zhang Y M, Wang L L, He K, Zhong R D, Schneeloch J A, Gu G D, Song C L, Ma X C and Xue Q K 2016 Sci. Bull. 61 1239 [32] Zhong Y, Fan J Q, Wang R F, Wang S Z, Zhang X F, Zhu Y Y, Dou Z Y, Yu X Q, Wang Y, Zhang D, Zhu J, Song C L, Ma X C and Xue Q K 2020 Phys. Rev. Lett. 125 077002 [33] Ming F F, Smith T S, Johnston S, Snijders P C and Weitering H H 2018 Phys. Rev. B 97 075403 [34] Ming F F, Johnston S, Mulugeta D, Smith T S, Vilmercati P, Lee G, Maier T A, Snijders P C and Weitering H H 2017 Phys. Rev. Lett. 119 266802 [35] Wang R F, Guan J Q, Xiong Y L, Zhang X F, Fan J Q, Zhu J, Song C L, Ma X C and Xue Q K 2020 Phys. Rev. B 102 100508(R) [36] Hu C, Zhao J F, Gao Q, Yan H T, Rong H T, Huang J W, Liu J, Cai Y Q, Li C, Chen H, Zhao L, Liu G, Jin C Q, Xu Z Y, Xiang T and Zhou X J 2021 Nat. Commun. 12 1 [37] Moukouri S, Allen S, Lemay F, Kyung B, Poulin D, Vilk Y M and Tremblay A M S 2000 Phys. Rev. B 61 7887 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|