Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067401    DOI: 10.1088/1674-1056/ac65f2
RAPID COMMUNICATION Prev   Next  

Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°

Yan-Ling Xiong(熊艳翎)1, Jia-Qi Guan(关佳其)1, Rui-Feng Wang(汪瑞峰)1, Can-Li Song(宋灿立)1,2,†, Xu-Cun Ma(马旭村)1,2,‡, and Qi-Kun Xue(薛其坤)1,2,3,4
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Frontier Science Center for Quantum Information, Beijing 100084, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Unusual quantum phenomena usually emerge upon doping Mott insulators. Using a molecular beam epitaxy system integrated with cryogenic scanning tunneling microscope, we investigate the electronic structure of a modulation-doped Mott insulator Sn/Si(111)-($\sqrt{3}\times \sqrt{3})R$30$^\circ$. In underdoped regions, we observe a universal pseudogap opening around the Fermi level, which changes little with the applied magnetic field and the occurrence of Sn vacancies. The pseudogap gets smeared out at elevated temperatures and alters in size with the spatial confinement of the Mott insulating phase. Our findings, along with the previously observed superconductivity at a higher doping level, are highly reminiscent of the electronic phase diagram in the doped copper oxide compounds.
Keywords:  pseudogap (PG)      modulation doping      Mott insulator      scanning tunneling microscope (STM)  
Received:  01 March 2022      Revised:  28 March 2022      Accepted manuscript online:  11 April 2022
PACS:  74.72.Kf (Pseudogap regime)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074092 and 11604366) and the National Key R&D Program of China (Grant No. 2018YFA0305603).
Corresponding Authors:  Can-Li Song, Xu-Cun Ma     E-mail:  clsong07@mail.tsinghua.edu.cn;xucunma@mail.tsinghua.edu.cn

Cite this article: 

Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤) Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30° 2022 Chin. Phys. B 31 067401

[1] Mott N F 1961 Philos. Mag. 6 287
[2] Mott N F 1982 Proc. R. Soc. London Ser. A 382 1
[3] Belitz D and Kirkpatrick T R 1994 Rev. Mod. Phys. 66 261
[4] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[5] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[6] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
[7] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[8] Renner C, Revaz B, Genoud J Y, Kadowaki K and Fischer O 1998 Phys. Rev. Lett. 80 149
[9] Chen Q J, Stajic J, Tan S and Levin K 2005 Phys. Rep. 412 1
[10] Geshkenbein V B, Ioffe L B and Larkin A I 1997 Phys. Rev. B 55 3173
[11] Loret B, Auvray N, Gallais Y, Cazayous M, Forget A, Colson D, Julien M H, Paul I, Civelli M and Sacuto A 2019 Nat. Phys. 15 771
[12] Caprara S, Di Castro C, Seibold G and Grilli M 2017 Phys. Rev. B 95 224511
[13] Kampf A P and Schrieffer J R 1990 Phys. Rev. B 42 7967
[14] Zhang T, Cheng Peng, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[15] Uchihashi T, Mishra P, Aono M and Nakayama T 2011 Phys. Rev. Lett. 107 207001
[16] Nakamura T, Kim H, Ichinokura S, Takayama A, Zotov A V, Saranin A A, Hasegawa Y and Hasegawa S 2018 Phys. Rev. B 98 134505
[17] Özer M M, Thompson J R and Weitering H H 2006 Nat. Phys. 2 173
[18] Matetskiy A V, Denisov N V, Hsing C R, Wei C M, Zotov A V and Saranin A A 2019 J. Phys. Condens. Mat. 31 115402
[19] Carpinelli J M, Weitering H H, Plummer E W and Stumpf R 1996 Nature 381 398
[20] Zhou Y H, Zhang P C, Fang Y M, Wu S Q and Zhu Z Z 2017 Mater. Chem. Phys. 199 225
[21] Carpinelli J M, Weitering H H, Bartkowiak M, Stumpf R and Plummer E W 1997 Phys. Rev. Lett. 79 2859
[22] Morikawa H, Matsuda I and Hasegawa S 2002 Phys. Rev. Lett. 65 201308(R)
[23] Ottaviano L, Crivellari M, Lozzi L and Santucci S 2000 Surf. Sci. 445 L41
[24] Profeta G and Tosatti E 2007 Phys. Rev. Lett. 98 086401
[25] Modesti S, Petaccia L, Ceballos G, Vobornik I, Panaccione G, Rossi G, Ottaviano L, Larciprete R, Lizzit S and Goldoni A 2007 Phys. Rev. Lett. 98 126401
[26] Odobescu A B, Maizlakh A A, Fedotov N I and Zaitsev-Zotov S V 2017 Phys. Rev. B 95 195151
[27] Wu X F, Ming F F, Smith T S, Liu G W, Ye F, Wang K Dong, Johnston S and Weitering H H 2020 Phys. Rev. lett. 125 117001
[28] Hsu L and Walukiewicz W 1997 Phys. Rev. B 56 1520
[29] Störmer H L and Tsang W T 1980 Appl. Phys. Lett. 36 685
[30] People R, Bean J C, Lang D V, Sergent A M, Störmer H L, Wecht K W, Lynch R T and Baldwin K 1984 Appl. Phys. Lett. 45 1231
[31] Zhong Y, Wang Y, Han S, Lv Y F, Wang W L, Zhang D, Ding H, Zhang Y M, Wang L L, He K, Zhong R D, Schneeloch J A, Gu G D, Song C L, Ma X C and Xue Q K 2016 Sci. Bull. 61 1239
[32] Zhong Y, Fan J Q, Wang R F, Wang S Z, Zhang X F, Zhu Y Y, Dou Z Y, Yu X Q, Wang Y, Zhang D, Zhu J, Song C L, Ma X C and Xue Q K 2020 Phys. Rev. Lett. 125 077002
[33] Ming F F, Smith T S, Johnston S, Snijders P C and Weitering H H 2018 Phys. Rev. B 97 075403
[34] Ming F F, Johnston S, Mulugeta D, Smith T S, Vilmercati P, Lee G, Maier T A, Snijders P C and Weitering H H 2017 Phys. Rev. Lett. 119 266802
[35] Wang R F, Guan J Q, Xiong Y L, Zhang X F, Fan J Q, Zhu J, Song C L, Ma X C and Xue Q K 2020 Phys. Rev. B 102 100508(R)
[36] Hu C, Zhao J F, Gao Q, Yan H T, Rong H T, Huang J W, Liu J, Cai Y Q, Li C, Chen H, Zhao L, Liu G, Jin C Q, Xu Z Y, Xiang T and Zhou X J 2021 Nat. Commun. 12 1
[37] Moukouri S, Allen S, Lemay F, Kyung B, Poulin D, Vilk Y M and Tremblay A M S 2000 Phys. Rev. B 61 7887
[1] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[2] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[3] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[4] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[5] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[6] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[7] Fast impurity solver for dynamical mean field theory based on second order perturbation around the atomic limit
Zhuang Jia-Ning(庄嘉宁), Liu Qing-Mei(刘青梅), Fang Zhong(方忠), and Dai Xi(戴希). Chin. Phys. B, 2010, 19(8): 087104.
[8] Interface dipole induced by asymmetric exchange effect in Mott-insulator/Mott-insulator heterojunction
Hao Lei (郝 雷), Wang Jun(汪 军). Chin. Phys. B, 2008, 17(11): 4305-4311.
No Suggested Reading articles found!