Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128104    DOI: 10.1088/1674-1056/ac8e96

Effect of oxygen on regulation of properties of moderately boron-doped diamond films

Dong-Yang Liu(刘东阳)1,2,†, Li-Cai Hao(郝礼才)1,3,†, Wei-Kang Zhao(赵伟康)1,3, Zi-Ang Chen(陈子昂)1,3, Kun Tang(汤琨)1,3,‡, Shun-Ming Zhu(朱顺明)1,3, Jian-Dong Ye(叶建东)1,3, Rong Zhang(张荣)1,3, You-Dou Zheng(郑有炓)1,3, and Shu-Lin Gu(顾书林)1,3,§
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 The Shanghai Huahong Grace Semiconductor Manufacturing Corporation, Shanghai 201203, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Abstract  Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated. Results show that, with adding a small amount of oxygen (oxygen-to-carbon ratio < 5.0%), the crystal quality of diamond is improved, and a suppression effect of residual nitrogen is observed. With increasing ratio of O/C from 2.5% to 20.0%, the hole concentration is firstly increased then reduced. This change of hole concentration is also explained. Moreover, the results of Hall effect measurement with temperatures from 300 K to 825 K show that, with adding a small amount of oxygen, boron and oxygen complex structures (especially B3O and B4O) are formed and exhibit as shallow donor in diamond, which results in increase of donor concentration. With further increase of ratio of O/C, the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration (the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%). This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen. The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration, which is applicable to electronic level of usage.
Keywords:  moderately boron doped diamond      crystal quality      suppression effect      boron and oxygen complex structures  
Received:  06 April 2022      Revised:  25 August 2022      Accepted manuscript online:  02 September 2022
PACS: (Diamond)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61775203, 61574075, 61974059, 61674077, and 91850112), the State Key Research and Development Project of Jiangsu, China (Grant No. BE2018115), State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices (Grant No. 2017KF001), and Anhui University Natural Science Research Project (Grant No. KJ2021A0037).
Corresponding Authors:  Kun Tang, Shu-Lin Gu     E-mail:;

Cite this article: 

Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林) Effect of oxygen on regulation of properties of moderately boron-doped diamond films 2022 Chin. Phys. B 31 128104

[1] Muzyka K, Sun J R, Fereja T H, Lan Y X, Zhang W and Xu G B 2019 Anal. Methods 11 397
[2] Lee K W and Pickett W E 2004 Phys. Rev. Lett. 93 237003
[3] Liu B, Zheng Y P, Peng H Q, Ji B F, Yang Y, Tang Y B, Lee C S and Zhang W J 2020 ACS Energy Lett. 5 2590
[4] Xu J, Yokota Y, Raymond A. Wong, Kim Y and Einaga Y 2020 J. Am. Chem. Soc. 142 2310
[5] Catalan F C I, Anh L T, Oh J, Kazuma E, Hayazawa N, Ikemiya N, Kamoshida N, Tateyama Y, Einaga Y and Kim Y 2021 Adv. Mater. 33 2103250
[6] Ma Z B, Wu C, Wang J H, Zhao H Y, Zhang L, Fu Q M and Wang C X 2016 Diamond Relat. Mater. 66 135
[7] Liang Q, Chin C Y, Lai J, Yan C S and Meng Y F 2019 Appl. Phys. Lett. 94 024103
[8] Bushier E V, Yurov V Y, Bolshakov A P, Ralchenko V G, Ashkinazi E E, Ryabova A V, Antonova I A, Volkov P V, Goryunov A V and Luk'yanov A Y 2016 Diamond Relat. Mater. 66 83
[9] Sumiya H, Toda N and Satoh S G 2002 J. Cryst. Growth 237 1281
[10] Zhang J Z, Tse K, Wong M H, Zhang Y and Zhu J Y 2016 Front. Phys. 11 117405
[11] Gao K, Wang B, Tao Li, Cunning B V, Zhang Z P, Wang S, Ruoff R S and Qu L T 2019 Adv. Mater. 31 1805121
[12] Fantechi E, Campo G, Carta D, Corrias A, Fernández C D J, Gatteschi D, Innocenti C, Pineider F, Rugi F and Sangregorio C 2012 J. Phys. Chem. C 116 8261
[13] Liu D Y, Hao L C, Chen Z A, Zhao W K, Shen Y, Bian Y, Tang K, Ye J D, Zhu S M, Zhang R, Zheng Y D and Gu S L 2020 Appl. Phys. Lett. 117 022101
[14] Lloret F, Sankaran K J, Millan-Barb J, Desta D, Rouzbahani R, Pobedinskas P, Gutierrez M, Boyen H and Haenen K 2020 Nanomaterials 10 1024
[15] Kunuku S, Ficek M, Wieloszynska A, Tamulewicz-Szwajkowska M, Gajewski K, Sawczak M, Lewkowicz A, Ryl J, Gotszalk T and Bogdanowicz R 2022 Nanotechnology 33 125603
[16] Issaouia R, Acharda J, Williama L, Mehmela L, Pinault Thauryb M A and Bénédica F 2019 Diamond Relat. Mater. 94 88
[17] Issaoui R, Achard J, Silva F, Tallaire A, Mille V and Gicque A 2011 Phys. Status Solidi A 208 2023
[18] Liu J L, Lin L Z, Zhao Y, Zheng Y T, An K, Wei J J, Chen L X, Hei L F, Wang J J, Feng Z H and Li C M 2018 Vacuum 155 391
[19] Bogdanov S A, Vikharev A L, Drozdov M N and Radishev D B 2017 Diamond Relat. Mater. 74 59
[20] Ma J, Richley J C, Davies R W, Cheesman A and Ashfold M N R 2010 J. Phys. Chem. A 114 2447
[21] Zhu Z Y, Chen G C, Tang W Z and Lv F X 2006 Chin. Phys. 15 0980
[22] Hao L C, Shen Y, Yang X D, Bian Y, Du Q Q, Liu D Y, Zhao W K, Ye J D, Tang K, Wu H P, Zhang R, Zheng Y D and Gu S L 2020 J. Phys. D: Appl. Phys. 53 075107
[23] Vandeveldea T, Wu T D, Quaeyhaegensb C, Vlekkenb J, D'Olieslaegerb M and Stals L 1999 Thin Solid Films 340 159
[24] Whetten T J, Armstead A A, Grzybowski T A and Ruoff A L 1984 J. Vac. Sci. Technol. A 2 477
[25] Barjon J, Chikoidze E, Jomard F, Dumont Y, Pinault-Thaury M A, Issaoui R, Brinza O, Achard J and Silva F 2012 Phys. Status Solidi A 209 1
[26] Grotjohn T A, Nicley S, Tran D, Reinhard D K, Becker M and Asmussen J 2009 MRS Online Proceedings Library 1203 1717
[27] Liu X B, Chen X, Singh D J, Sternd R A, Wu J S, Petitgirardf S, Bin C R and Jacobsen S D 2019 Proc. Natl. Acad. Sci. USA 116 7703
[1] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[2] Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition
Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(6): 067103.
[3] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui (王党会), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃), Zhang Jin-Cheng (张进成), Xu Tian-Han (许天旱), Lin Zhi-Yu (林志宇), Zhou Hao (周昊), Xue Xiao-Yong (薛晓咏 ). Chin. Phys. B, 2013, 22(2): 028101.
[4] Nonsequential double ionization of nonaligned diatomic molecules N2 and O2
Jia Xin-Yan (贾欣燕), Fan Dai-He (樊代和), Li Wei-Dong (李卫东), Chen Jing (陈京). Chin. Phys. B, 2013, 22(1): 013303.
No Suggested Reading articles found!