Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078101    DOI: 10.1088/1674-1056/ac598c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion

Fengling Chen(陈峰岭)1,2, Chaozhi Zeng(曾朝智)3, Chun Huang(黄淳)3,†, Jiannan Lin(林建楠)4, Yifan Chen(陈一帆)4, Binbin Dong(董彬彬)4, Chujun Yin(尹楚君)1,2, Siying Tian(田飔莹)1,2, Dapeng Sun(孙大鹏)1,2, Zhenyu Zhang(张振宇)4,‡, Hong Li(李泓)2,5,§, and Chaobo Li(李超波)1,2,¶
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
4 Beijing Welion New Energy Technology Co., Ltd, Beijing 102402, China;
5 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  One of the major hurdles of nickel-rich cathode materials for lithium-ion batteries is the low cycling stability, especially at high temperature and high voltage, originating from severe structural degradation, which makes this class of cathode less practical. Herein, we compared the effect of single and dual ions on electrochemical performance of high nickel (LiNi0.88Mn0.03Co0.09O2, NMC) cathode material in different temperatures and voltage ranges. The addition of a few amounts of tantalum (0.2 wt%) and boron (0.05 wt%) lead to improved electrochemical performance. The co-modified LiNi0.88Mn0.03Co0.09O2 displays an initial discharge capacity of 234.9 mAh/g at 0.1 C and retained 208 mAh/g at 1 C after 100 cycles at 45 ℃, which corresponds to a capacity retention of 88.5%, compared to the initial discharge capacity of 234.1 mAh/g and retained capacity of 200.5 mAh/g (85.6%). The enhanced capacity retention is attributed to the synergetic effect of foreign elements by acting as a surface structural stabilizer without sacrificing specific capacity.
Keywords:  LiNi0.88Mn0.03Co0.09O2      lithium-ion battery      cathode material      modification  
Received:  08 February 2022      Revised:  23 February 2022      Accepted manuscript online:  02 March 2022
PACS:  81.65.-b (Surface treatments)  
  81.40.Np (Fatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  47.20.Hw (Morphological instability; phase changes)  
Fund: Project supported by the Key Laboratory Fund (Grant No. 6142804200303) from Science and Technology on Microsystem Laboratory, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences:Original Innovation Projects from 0 to 1 (Grant No. ZDBS-LY-JSC010), Beijing Municipal Science & Technology Commission (Grant No. Z191100004719001).
Corresponding Authors:  Chun Huang, Zhenyu Zhang, Hong Li, Chaobo Li     E-mail:  huangchun@sari.ac.cn;zyzhang@solidstatelion.com;hli@iphy.ac.cn;lichaobo@ime.ac.cn

Cite this article: 

Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波) Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion 2022 Chin. Phys. B 31 078101

[1] Zhang H, Zhao H, Khan M A, Zou W, Xu J and Zhang L 2018 J. Mater. Chem. A 6 20564
[2] Zhao Z, Xia K and Hou Y 2021 Chem. Soc. Rev. 50 12702
[3] Chen H, Liu R and Wu Y 2021 Chem. Eng. J. 407 126973
[4] Wang X, Wang B, Yang J, Ran Q, Zou J, Chen P, Li L, Wang L and Niu X 2021 Chin. Phys. B 30 88201
[5] Zhang J, Li Q, Li Q, Yu X and Li H 2018 Chin. Phys. B 27 88202
[6] Wang Y, Liu B, Zhou G, Nie K, Zhang J, Yu X and Li H 2019 Chin. Phys. B 28 68202
[7] Shang T, Xiao D, Zhang Q, Wang X, Su D and Gu L 2021 Chin. Phys. B 30 78202
[8] Manthiram A 2020 Nat. Commun. 11 1550
[9] Choi J U, Voronina N, Sun Y K and Myung S T 2020 Adv. Energy Mater. 10 2002027
[10] Eum D, Kim B, Kim S J, Park H, Wu J and Cho S P 2020 Nat. Mater. 19 419
[11] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K and Saubanére M 2015 Nat. Mater. 14 230
[12] Yabuuchi N 2020 Nat. Mater. 19 372
[13] Zhang S S 2020 Energy Storage Mater. 24 247
[14] Luo Y R 2012 CRC Handbook of Chemistry and Physics (America:Boca Raton) 89 pp. 65-97
[15] Amalraj S F, Raman R, Chakraborty A, Leifer N, Nanda R, Kunnikuruvan S, Kravchuk T, Grinblat J, Ezersky V, Sun R, Deepak F L, Erk C, Wu X, Maiti S, Hadar Sclar H, Goobes G, Major T D, Talianker M, Markovsky B and Aurbach D 2021 Energy Storage Mater. 42 594
[16] Uzun D 2015 Solid State Ionics 281 73
[17] Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S and Sun Y K 2018 Adv. Energy Mater. 8 1801202
[18] Kim U H, Park G T, Son B K, Nam G W, Liu J and Kuo L Y 2020 Nat. Energy 5 860
[19] Shin Y, Kan W H, Aykol M, Papp J K, Mccloskey B D and Chen G 2018 Nat. Commun. 9 4597
[20] Ryu H H, Park N Y, Yoon D R, Kim U H, Yoon C S and Sun Y K 2020 Adv. Energy Mater. 10 2000495
[21] Zhang X, Zhang P, Zeng T, Yu Z, Qu X and Peng X 2021 ACS Appl. Energy Mater. 4 8641
[22] Zou Y G, Mao H, Meng X H, Du Y H, Sheng H and Yu X 2021 Angew. Chem. 133 26739
[23] Kim Y, Seong W M and Manthiram A 2021 Energy Storage Mater. 34 250
[24] Zhong S W, Chen P and Yao W L 2015 ECS Electrochem. Lett. 4 A45
[25] Liu Y, Yao W L, Lei C, Zhang Q, Zhong S W and Yan Z Q 2019 J. Electrochem. Soc. 166 A1300
[26] Tang X, Zhou J, Bai M, Wu W, Li S and Ma Y 2019 J. Mater. Chem. A 7 13364
[27] Tang X Y, Jia Q R, Yang L Y, Bai M, Wu W W, Wang Z Q, Gong M, Sa S P, Tao S Y, Sun M K and Ma Y 2020 Energy Storage Mater. 33 239
[28] Ryu H H, Park N Y, Seo J H, Yu Y S, Sharma M and Mücke R 2020 Mater. Today 36 73
[29] Zheng J, Yan P, Estevez L, Wang C and Zhang J G 2018 Nano Energy 49 538
[30] Chang B, Gersten B L, Szewczyk S T and Adams J W 2007 Appl. Phys. A 86 83
[31] Jamil S, Yu R, Wang Q, Fasehullah M, Huang Y and Yang Z 2020 J. Power Sources 473 228597
[32] Moddeman W E, Burke A R, Bowling W C and Foose D S 1989 Surf. Interface Anal. 14 224
[33] Shi J L, Xiao D D, Ge M, Yu X, Chu Y and Huang X 2018 Adv. Mater. 30 1705575
[34] Abebe E B, Yang C C, Wu S H, Chien W C and Li Y J 2021 ACS Appl. Energy Mater. 4 14295
[35] Liu Y, Fu N, Zhang G, Lu W, Zhou L and Huang H 2016 J. Mater. Chem. A 4 15049
[36] Yonghyun C, Oh P and Cho J 2013 Nano lett. 13 1145
[37] Yang S, Ren W and Chen J 2017 Ionics 23 2969
[38] Liu D, Su Z and Wang L 2021 Ceram. Int. 47 42
[39] Yu L, Tian Y, Xing Y, Hou C, Si Y and Lu H 2021 Ionics 27 5021
[40] Huang X, Zhu W, Yao J, Bu L, Li X and Tian K 2020 J. Mater. Chem. A 8 17429
[41] Liu Y, Zhu Y and Cui Y 2019 Nat. Energy 4 540
[42] Xu C L, Xiang W, Wu Z G, Xu Y, Li Y and Wang Y 2019 ACS Appl. Mater. Interfaces 11 16629
[43] Chen Z, Wang J, Huang J, Fu T, Sun G and Lai S 2017 J. Power Sources 363 168
[44] Hu G, Li L, Lu Y, Cao Y, Peng Z and Xue Z 2020 J. Electrochem. Soc. 167 140505
[45] Phillip N D, Ruther R E, Sang X, Wang Y, Unocic R R and Westover A S 2019 ACS Appl. Energy Mater. 2 1405
[46] Yeh N H, Wang F M, Khotimah C, Wang X C, Lin Y W and Chang S C 2021 ACS Appl. Mater. Interfaces 13 7355
[47] Loghavi M M, Mohammadi-Manesh H and Eqra R 2019 J. Electroanal. Chem. 848 113326
[48] Wen B, Deng Z, Tsai P C, Lebens-Higgins Z W, Piper L F J and Ong S P 2020 Nat. Energy 5 578
[49] Björklund E, Brandell D, Hahlin M, Edström K and Younesi R 2017 J. Electrochem. Soc. 164 A3054
[50] Choi N S, Han J G, Ha S Y, Park I and Back C K 2015 Rsc Adv. 5 2732
[51] Zheng J, Engelhard M H, Mei D, Jiao S, Polzin B J and Zhang J G 2017 Nat. Energy 2 17012
[52] Deng T, Fan X, Cao L, Chen J, Hou S and Ji X 2019 Joule 3 2550
[53] Xiong X H, Wang Z X, Yin X, Guo H J and Li X H 2013 Mater. Lett. 110 4
[1] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[2] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[3] Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy
Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚). Chin. Phys. B, 2021, 30(8): 086110.
[4] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[5] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[6] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[7] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[8] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
[9] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[10] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[11] A simulation study of water property changes using geometrical alteration in SPC/E
Ming-Ru Li(李明儒), Nan Zhang(张楠), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(8): 083103.
[12] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[13] High-efficiency organic light-emitting diodes based on ultrathin blue phosphorescent modification layer
Yun-Ke Zhu(朱云柯), Jian Zhong(钟建), Shu-Ying Lei(雷疏影), Hui Chen(陈辉), Shuang-Shuang Shao(邵双双), Yu Lin(林宇). Chin. Phys. B, 2017, 26(8): 087302.
[14] The inelastic electron tunneling spectroscopy of edge-modified graphene nanoribbon-based molecular devices
Zong-Ling Ding(丁宗玲), Zhao-Qi Sun(孙兆奇), Jin Sun(孙进), Guang Li(李广), Fan-Ming Meng(孟凡明), Ming-Zai Wu(吴明在), Yong-Qing Ma(马永青), Long-Jiu Cheng(程龙玖), Xiao-Shuang Chen(陈效双). Chin. Phys. B, 2017, 26(2): 023103.
[15] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
No Suggested Reading articles found!