CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interaction and spin-orbit effects on a kagome lattice at 1/3 filling |
Liu Hai-Di (刘海迪), Chen Yao-Hua (陈耀桦), Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Wu Jian-Hua (武建华) |
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We investigate the competing effects of spin-orbit coupling and electron-electron interaction on a kagome lattice at 1/3 filling. We apply the cellular dynamical mean-field theory and its real-space extension combined with the continuous time quantum Monte Carlo method, and obtain a phase diagram including the effects of the interaction and the spin-orbit coupling at T=0.1t, where T is the temperature and t is the hopping energy. We find that without the spin-orbit coupling, the system is in a semi-metal phase stable against the electron-electron interaction. The presence of the spin-orbit coupling can induce a topological non-trivial gap and drive the system to a topological insulator, and as the interaction increases, a larger spin-orbit coupling is required to reach the topological insulating phase.
|
Received: 20 January 2014
Revised: 19 February 2014
Accepted manuscript online:
|
PACS:
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921502 and 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 61227902, 61378017, and 11311120053). |
Corresponding Authors:
Liu Hai-Di
E-mail: hdliu@iphy.ac.cn
|
About author: 71.10.-w; 05.30.Rt; 71.10.Fd |
Cite this article:
Liu Hai-Di (刘海迪), Chen Yao-Hua (陈耀桦), Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Wu Jian-Hua (武建华) Interaction and spin-orbit effects on a kagome lattice at 1/3 filling 2014 Chin. Phys. B 23 077101
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[4] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[5] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
|
[6] |
Xiu F X and Zhao T T 2013 Chin. Phys. B 22 96104
|
[7] |
Ding Y, Shen J, Pang Y, Liu G T, Fan J, Ji Z Q, Yang C L and Lü L 2013 Acta Phys. Sin. 62 167401 (in Chinese)
|
[8] |
Guo J H, Qiu F, Zhang Y, Deng H Y, Hu G J, Li X N, Yu G L and Dai N 2013 Chin. Phys. Lett 30 106801
|
[9] |
Wu C J, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106401
|
[10] |
Xu C K and Moore J E 2006 Phys. Rev. B 73 045322
|
[11] |
Yu S L, Xie X C and Li J X 2011 Phys. Rev. Lett. 107 010401
|
[12] |
Hohenadler M, Lang T C and Assaad F F 2011 Phys. Rev. Lett. 106 100403
|
[13] |
Lee D H 2011 Phys. Rev. Lett. 107 166806
|
[14] |
Wu W, Rachel S, Liu W M and Le Hur K 2012 Phys. Rev. B 85 205102
|
[15] |
Yuan J, Gao J H, Chen W Q, Ye F, Zhou Y and Zhang F C 2012 Phys. Rev. B 86 104505
|
[16] |
Hohenadler M and Assaad F F 2013 J. Phys.: Condens. Matter 25 143201
|
[17] |
Zheng D, Zhang G M and Wu C J 2011 Phys. Rev. B 84 205121
|
[18] |
Maciejko J, Chua V and Fiete G A 2014 Phys. Rev. Lett. 112 016404
|
[19] |
Wen X G 2002 Phys. Rev. B 65 165113
|
[20] |
Colman R H, Sinclair A and Wills A S 2010 Chem. Mater. 22 5774
|
[21] |
Fåk B, Kermarrec E, Messio L, Bernu B, Lhuillier C, Bert F, Mendels P, Koteswararao B, Bouquet F, Ollivier J, Hillier A D, Amato A, Colman R H and Wills A S 2012 Phys. Rev. Lett. 109 037208
|
[22] |
Yan S M, Huse D A and White S R 2011 Science 332 1173
|
[23] |
Nishimoto S, Nakamura M, O'Brien A and Fulde P 2010 Phys. Rev. Lett. 104 196401
|
[24] |
Yamada A, Seki K, Eder R and Ohta Y 2011 Phys. Rev. B 83 195127
|
[25] |
Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
|
[26] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[27] |
Guo H M and Franz M 2009 Phys. Rev. B 80 113102
|
[28] |
Liu G C, Zhu S L, Jiang S J, Sun F D and Liu W M 2010 Phys. Rev. A 82 053605
|
[29] |
Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125
|
[30] |
Raghu S, Qi X L, Honerkamp C and Zhang S C 2008 Phys. Rev. Lett. 100 156401
|
[31] |
Zhang Y, Ran Y and Vishwanath A 2009 Phys. Rev. B 79 245331
|
[32] |
Kotliar G, Savrasov S Y, Pálsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
|
[33] |
Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
|
[34] |
Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
|
[35] |
Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
|
[36] |
Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
|
[37] |
Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett. 108 246402
|
[38] |
Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A 82 043625
|
[39] |
Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
|
[40] |
Mand J and Gubernatis J E 1996 Physics Reports 269 133
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|