INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
GaN hexagonal pyramids formed by a photo-assisted chemical etching method |
Zhang Shi-Ying (张士英)a b, Xiu Xiang-Qian (修向前)a, Hua Xue-Mei (华雪梅)a, Xie Zi-Li (谢自力)a, Liu Bin (刘斌)a, Chen Peng (陈鹏)a, Han Ping (韩平)a, Lu Hai (陆海)a, Zhang Rong (张荣)a, Zheng You-Dou (郑有炓)a |
a Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China; b College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China |
|
|
Abstract A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a convenient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed analysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.
|
Received: 04 August 2013
Revised: 03 November 2013
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
81.65.Cf
|
(Surface cleaning, etching, patterning)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900, 2012CB619304, and 2010CB327504), the National High Technology Research and Development Program of China (Grant No. 2011AA03A103), the National Nature Science Foundation of China (Grant Nos. 60990311, 60906025, 60936004, and 61176063), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2011010 and BK2009255). |
Corresponding Authors:
Xiu Xiang-Qian, Zhang Rong
E-mail: xqxiu@nju.edu.cn;rzhang@nju.edu.cn
|
About author: 81.05.Ea; 68.65.-k; 81.65.Cf; 78.55.-m |
Cite this article:
Zhang Shi-Ying (张士英), Xiu Xiang-Qian (修向前), Hua Xue-Mei (华雪梅), Xie Zi-Li (谢自力), Liu Bin (刘斌), Chen Peng (陈鹏), Han Ping (韩平), Lu Hai (陆海), Zhang Rong (张荣), Zheng You-Dou (郑有炓) GaN hexagonal pyramids formed by a photo-assisted chemical etching method 2014 Chin. Phys. B 23 058101
|
[1] |
Pearton S J, Chen J J, Lim W T, Ren F and Norton D P 2007 ECS Trans. 6 501
|
[2] |
Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C and Hao Y 2012 Chin. Phys. B 21 077103
|
[3] |
Chen J, Fan G H, Zhang Y Y, Pang W, Zheng S W and Yao G R 2012 Chin. Phys. B 21 058504
|
[4] |
Wierer J J, Steigerwald D A, Krames M R, O'shea J J, Ludowise M J, Christenson G, Shen Y C, Lowery C, Martin P S, Subramanya S, Gotz W, Gardner N F, Kern R S and Stockman S A 2001 Appl. Phys. Lett. 78 3379
|
[5] |
Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
|
[6] |
Huh C, Lee K S, Kang E J and Park S J 2003 J. Appl. Phys. 93 9383
|
[7] |
He A H, Zhang Y, Zhu X H, Chen X W, Fan G H and He M 2010 Chin. Phys. B 19 068101
|
[8] |
Gao H Y, Yan F W, Fan Z C, Li J M, Zeng Y P and Wang G H 2008 Chin. Phys. Lett. 25 3448
|
[9] |
He A H, Zhang Y, Zhu X H, Chen X W, Fan G H and He M 2010 Chin. Phys. B 19 068101
|
[10] |
Jiang H X, Lin J Y, Zeng K C and Yang W 1999 Appl. Phys. Lett. 75 763
|
[11] |
Tachibana K, Someya T, Ishida S and Arakawa Y 2000 Appl. Phys. Lett. 76 3212
|
[12] |
Kozawa T, Ohwaki T, Taga Y and Sawaki N 1999 Appl. Phys. Lett. 75 3330
|
[13] |
Cho Y H, Kim H M, Kang T W, Song J J and Yang W 2002 Appl. Phys. Lett. 80 1141
|
[14] |
Zeng K C, Lin J Y, Jiang H X and Yang W 1999 Appl. Phys. Lett. 74 1227
|
[15] |
Liu Q K, Hoffmann A, Siegle H, Kaschner A, Thomsen C, Christen J and Bertram F 1999 Appl. Phys. Lett. 74 3122
|
[16] |
Tanaka S, Kawaguchi Y, Sawaki N, Hibino M and Hiramatsu K 2000 Appl. Phys. Lett. 76 2701
|
[17] |
Rosner S J, Carr E C, Ludowise M J, Girolami G and Erikson H I 1997 Appl. Phys. Lett. 70 420
|
[18] |
Nakamura S 1998 Science 281 956
|
[19] |
Bertram F, Christen J, Schmidt M, Hiramatsu K, Kitamura S and Sawaki N 1998 Physica E 2 552
|
[20] |
Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L and Jiang F Y 2013 Chin. Phys. Lett. 30 098101
|
[21] |
Weyher J L, Brown P D, Rouvi'ere J L, Wosinski T, Zauner A R A and Grzegory I 2000 J. Cryst. Growth 210 151
|
[22] |
Kamler G, Smalc J, Woz'niak M, Weyher J L, Czernecki R, Targowski G, Leszczyn'ski M, Grzegory I and Porowski S 2006 J. Cryst. Growth 293 18
|
[23] |
Bardwell J A, Foulds I G, Webb J B, Tang H, Fraser J, MosiaN S and Rolfe S J 1999 J. Electron. Mater. 28 L24
|
[24] |
Bardwell J A, Webb J B, Tang H, Fraser J and Moisa S 2001 The Electrochemical Society (Vol. 1) (USA: Pennington) pp. 193-203
|
[25] |
Bardwell J A, Webb J B, Tang H, Fraser J and Moisa S 2001 J. Appl. Phys. 89 4142
|
[26] |
Maher H, DiSanto D, Soerensen G, Dvorak M W, MacElwee T W, Webb J B and Bolognesi C R 2000 Proceedings of the IEEE/Cornell Conference on High Performance Devices, August 7-9, 2000, New York, USA, p. 192
|
[27] |
Maher H, DiSanto D W, Soerensen G, Bolognesi C R, Tang H and Webb J B 2000 Appl. Phys. Lett. 77 3833
|
[28] |
Parish G, Scali P A, Spaargaren S M R and Nener B D 2001 Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), December 17-19, 2001, Adelaide, Australia, p. 104
|
[29] |
Gao Y, Fujii T, Shama R, Fujito K, Denbarrs S P, Nakamura S and Hu E L 2004 Jpn. J. Appl. Phys. 43 L637
|
[30] |
Ng H M, Weimann N G and Chowdhury A 2003 J. Appl. Phys. 94 650
|
[31] |
Han S C, Kim J K, Kim J Y, Kim K K, Tampo H, Niki S and Lee J M 2010 J. Electrochem. Soc. 157 D60
|
[32] |
Jung Y, Baik K H, Ren F, Pearton S J and Kim J 2010 J. Electrochem. Soc. 157 H676
|
[33] |
Kolthoff I M and Miller I K 1951 J. Am. Chem. Soc. 73 3055
|
[34] |
Minsky M S, White M and Hu E L 1996 Appl. Phys. Lett. 68 1531
|
[35] |
Youtsey C, Adesida I and Bulman G 1997 Appl. Phys. Lett. 71 2151
|
[36] |
Li D S, Sumiya M, Fuke S, Yang D, Que D, Suzuki Y and Fukuda Y 2001 J. Appl. Phys. 90 4219
|
[37] |
Zhuang D and Edgar J H 2005 Mater. Sci. Eng. R. 48 1
|
[38] |
Porter D A and Easterling K E 1992 Phase Transformations in Metals and Alloys (New York: Chapman & Hall) p. 47
|
[39] |
Zhang S Y, Xiu X Q, Lin Z Q, Hua X M, Xie Z I, Zhang R and Zheng Y D 2013 Chin. Phys. Lett. 30 056801
|
[40] |
Gomer R 1961 Field Emission and Field Ionization p. 171
|
[41] |
Heying B, Wu X H, Keller S, Li Y, Kapolnek D, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
|
[42] |
Hartono H, Soh C B, Chow S Y, Chua S J and Fitzgerald E 2007 Appl. Phys. Lett. 90 171917
|
[43] |
Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503
|
[44] |
Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J and Scherer A 1993 Appl. Phys. Lett. 63 2174
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|