Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058101    DOI: 10.1088/1674-1056/23/5/058101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

GaN hexagonal pyramids formed by a photo-assisted chemical etching method

Zhang Shi-Ying (张士英)a b, Xiu Xiang-Qian (修向前)a, Hua Xue-Mei (华雪梅)a, Xie Zi-Li (谢自力)a, Liu Bin (刘斌)a, Chen Peng (陈鹏)a, Han Ping (韩平)a, Lu Hai (陆海)a, Zhang Rong (张荣)a, Zheng You-Dou (郑有炓)a
a Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China;
b College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China
Abstract  A series of experiments were conducted to systematically study the effects of etching conditions on GaN by a convenient photo-assisted chemical (PAC) etching method. The solution concentration has an evident influence on the surface morphology of GaN and the optimal solution concentrations for GaN hexagonal pyramids have been identified. GaN with hexagonal pyramids have higher crystal quality and tensile strain relaxation compared with as-grown GaN. A detailed analysis about evolution of the size, density and optical property of GaN hexagonal pyramids is described as a function of light intensity. The intensity of photoluminescence spectra of GaN etched with hexagonal pyramids significantly increases compared to that of as-grown GaN due to multiple scattering events, high quality GaN with pyramids and the Bragg effect.
Keywords:  hexagonal pyramids      GaN      photo-assisted chemical etching  
Received:  04 August 2013      Revised:  03 November 2013      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  81.65.Cf (Surface cleaning, etching, patterning)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900, 2012CB619304, and 2010CB327504), the National High Technology Research and Development Program of China (Grant No. 2011AA03A103), the National Nature Science Foundation of China (Grant Nos. 60990311, 60906025, 60936004, and 61176063), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2011010 and BK2009255).
Corresponding Authors:  Xiu Xiang-Qian, Zhang Rong     E-mail:  xqxiu@nju.edu.cn;rzhang@nju.edu.cn
About author:  81.05.Ea; 68.65.-k; 81.65.Cf; 78.55.-m

Cite this article: 

Zhang Shi-Ying (张士英), Xiu Xiang-Qian (修向前), Hua Xue-Mei (华雪梅), Xie Zi-Li (谢自力), Liu Bin (刘斌), Chen Peng (陈鹏), Han Ping (韩平), Lu Hai (陆海), Zhang Rong (张荣), Zheng You-Dou (郑有炓) GaN hexagonal pyramids formed by a photo-assisted chemical etching method 2014 Chin. Phys. B 23 058101

[1] Pearton S J, Chen J J, Lim W T, Ren F and Norton D P 2007 ECS Trans. 6 501
[2] Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C and Hao Y 2012 Chin. Phys. B 21 077103
[3] Chen J, Fan G H, Zhang Y Y, Pang W, Zheng S W and Yao G R 2012 Chin. Phys. B 21 058504
[4] Wierer J J, Steigerwald D A, Krames M R, O'shea J J, Ludowise M J, Christenson G, Shen Y C, Lowery C, Martin P S, Subramanya S, Gotz W, Gardner N F, Kern R S and Stockman S A 2001 Appl. Phys. Lett. 78 3379
[5] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
[6] Huh C, Lee K S, Kang E J and Park S J 2003 J. Appl. Phys. 93 9383
[7] He A H, Zhang Y, Zhu X H, Chen X W, Fan G H and He M 2010 Chin. Phys. B 19 068101
[8] Gao H Y, Yan F W, Fan Z C, Li J M, Zeng Y P and Wang G H 2008 Chin. Phys. Lett. 25 3448
[9] He A H, Zhang Y, Zhu X H, Chen X W, Fan G H and He M 2010 Chin. Phys. B 19 068101
[10] Jiang H X, Lin J Y, Zeng K C and Yang W 1999 Appl. Phys. Lett. 75 763
[11] Tachibana K, Someya T, Ishida S and Arakawa Y 2000 Appl. Phys. Lett. 76 3212
[12] Kozawa T, Ohwaki T, Taga Y and Sawaki N 1999 Appl. Phys. Lett. 75 3330
[13] Cho Y H, Kim H M, Kang T W, Song J J and Yang W 2002 Appl. Phys. Lett. 80 1141
[14] Zeng K C, Lin J Y, Jiang H X and Yang W 1999 Appl. Phys. Lett. 74 1227
[15] Liu Q K, Hoffmann A, Siegle H, Kaschner A, Thomsen C, Christen J and Bertram F 1999 Appl. Phys. Lett. 74 3122
[16] Tanaka S, Kawaguchi Y, Sawaki N, Hibino M and Hiramatsu K 2000 Appl. Phys. Lett. 76 2701
[17] Rosner S J, Carr E C, Ludowise M J, Girolami G and Erikson H I 1997 Appl. Phys. Lett. 70 420
[18] Nakamura S 1998 Science 281 956
[19] Bertram F, Christen J, Schmidt M, Hiramatsu K, Kitamura S and Sawaki N 1998 Physica E 2 552
[20] Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L and Jiang F Y 2013 Chin. Phys. Lett. 30 098101
[21] Weyher J L, Brown P D, Rouvi'ere J L, Wosinski T, Zauner A R A and Grzegory I 2000 J. Cryst. Growth 210 151
[22] Kamler G, Smalc J, Woz'niak M, Weyher J L, Czernecki R, Targowski G, Leszczyn'ski M, Grzegory I and Porowski S 2006 J. Cryst. Growth 293 18
[23] Bardwell J A, Foulds I G, Webb J B, Tang H, Fraser J, MosiaN S and Rolfe S J 1999 J. Electron. Mater. 28 L24
[24] Bardwell J A, Webb J B, Tang H, Fraser J and Moisa S 2001 The Electrochemical Society (Vol. 1) (USA: Pennington) pp. 193-203
[25] Bardwell J A, Webb J B, Tang H, Fraser J and Moisa S 2001 J. Appl. Phys. 89 4142
[26] Maher H, DiSanto D, Soerensen G, Dvorak M W, MacElwee T W, Webb J B and Bolognesi C R 2000 Proceedings of the IEEE/Cornell Conference on High Performance Devices, August 7-9, 2000, New York, USA, p. 192
[27] Maher H, DiSanto D W, Soerensen G, Bolognesi C R, Tang H and Webb J B 2000 Appl. Phys. Lett. 77 3833
[28] Parish G, Scali P A, Spaargaren S M R and Nener B D 2001 Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), December 17-19, 2001, Adelaide, Australia, p. 104
[29] Gao Y, Fujii T, Shama R, Fujito K, Denbarrs S P, Nakamura S and Hu E L 2004 Jpn. J. Appl. Phys. 43 L637
[30] Ng H M, Weimann N G and Chowdhury A 2003 J. Appl. Phys. 94 650
[31] Han S C, Kim J K, Kim J Y, Kim K K, Tampo H, Niki S and Lee J M 2010 J. Electrochem. Soc. 157 D60
[32] Jung Y, Baik K H, Ren F, Pearton S J and Kim J 2010 J. Electrochem. Soc. 157 H676
[33] Kolthoff I M and Miller I K 1951 J. Am. Chem. Soc. 73 3055
[34] Minsky M S, White M and Hu E L 1996 Appl. Phys. Lett. 68 1531
[35] Youtsey C, Adesida I and Bulman G 1997 Appl. Phys. Lett. 71 2151
[36] Li D S, Sumiya M, Fuke S, Yang D, Que D, Suzuki Y and Fukuda Y 2001 J. Appl. Phys. 90 4219
[37] Zhuang D and Edgar J H 2005 Mater. Sci. Eng. R. 48 1
[38] Porter D A and Easterling K E 1992 Phase Transformations in Metals and Alloys (New York: Chapman & Hall) p. 47
[39] Zhang S Y, Xiu X Q, Lin Z Q, Hua X M, Xie Z I, Zhang R and Zheng Y D 2013 Chin. Phys. Lett. 30 056801
[40] Gomer R 1961 Field Emission and Field Ionization p. 171
[41] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
[42] Hartono H, Soh C B, Chow S Y, Chua S J and Fitzgerald E 2007 Appl. Phys. Lett. 90 171917
[43] Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503
[44] Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J and Scherer A 1993 Appl. Phys. Lett. 63 2174
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[15] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
No Suggested Reading articles found!