Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057804    DOI: 10.1088/1674-1056/23/5/057804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of oblique incidence on terahertz responses of planar split-ring resonators

Pan Xue-Cong (潘学聪), Xia Xiao-Xiang (夏晓翔), Wang Li (汪力)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Effects of oblique incidence of terahertz waves on the response of planar split-ring resonators are investigated, both experimentally and by simulation. It is found that the incident angle dependent phase delay and coupling conditions of neighboring split-ring resonator (SRR) units play important roles and greatly change both the transmission and reflection spectra for the resonant feature of linear charge oscillations. Our results show that the SRR structure-supported magnetoelectric couplings at oblique excitation are trivial and can be ignored. A highly symmetric response is found in the cross-polarization effects, which may manifest the bianisotropic properties of the SRR system but this needs further study.
Keywords:  terahertz      split-ring resonators      polarization  
Received:  01 November 2013      Revised:  03 December 2013      Accepted manuscript online: 
PACS:  78.66.Sq (Composite materials)  
  78.90.+t (Other topics in optical properties, condensed matter spectroscopy and other interactions of particles and radiation with condensed matter)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800) and the National Natural Science Foundation of China (Grant Nos. 11374358 and 61077082).
Corresponding Authors:  Wang Li     E-mail:  wangli@aphy.iphy.ac.cn
About author:  78.66.Sq; 78.90.+t

Cite this article: 

Pan Xue-Cong (潘学聪), Xia Xiao-Xiang (夏晓翔), Wang Li (汪力) Effects of oblique incidence on terahertz responses of planar split-ring resonators 2014 Chin. Phys. B 23 057804

[1] Lapine M, Shadrivov I V, Powell D A and Kivshar Y S 2012 Nat. Mater. 11 30
[2] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[3] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
[4] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[5] Padilla W J, Aronsson M T, Highstrete C, Lee M, Taylor A J and Averitt R D 2007 Phys. Rev. B 75 041102(R)
[6] Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M and Cummer S A 2008 Appl. Phys. Lett. 93 191110
[7] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W L and Zheludev N I 2009 Phys. Rev. B 80 153104
[8] Shen N H, Massaouti M, Gokkavas M, Manceau J M, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S and Soukoulis C M 2011 Phys. Rev. Lett. 106 037403
[9] Miyamaru F, Takeda M W and Taima K 2009 Appl. Phys. Express 2 042001
[10] Driscoll T, Andreev G O, Basov D N, Palit S, Ren T, Mock J, Cho S Y, Jokerst N M and Smith D R 2007 Appl. Phys. Lett. 90 092508
[11] Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T and Soukoulis C M 2005 Phys. Rev. Lett. 95 203901
[12] Kolb P W, Corrigan T D, Drew H D, Sushkov A B, Phaneuf R J, Khanikaev A, Mousavi S H and Shvets G 2010 Opt. Express 18 24025
[13] Menzel C, Singh R, Rockstuhl C, Zhang W L and Lederer F 2009 J. Opt. Soc. Am. B 26 B143
[14] Smith D R, Gollub J, Mock J J, Padilla W J and Schurig D 2006 J. Appl. Phys. 100 024507
[15] Guth N, Gallas B, Rivory J, Grand J, Ourir A, Guida G, Abdeddaim R, Jouvaud C and Rosny J 2012 Phys. Rev. B 85 115138
[16] Marqués R, Medina F and Rafii-El-Idrissi R 2002 Phys. Rev. B 65 144440
[17] Plum E, Liu X X, Fedotov V A, Chen Y, Tsai D P and Zheludev N I 2009 Phys. Rev. Lett. 102 113902
[18] Singh R, Plum E, Zhang W L and Zheludev N I 2010 Opt. Express 18 13425
[19] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett. 96 107401
[20] Taflove A and Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method (2nd Edn.) (London: Artech House) pp. 569-614
[21] Belkhir A and Baida F I 2008 Phys. Rev. E 77 056701
[22] Singh R, Rockstuhl C, Lederer F and Zhang W L 2009 Appl. Phys. Lett. 94 021116
[23] Singh R, Al-Naib I A I, Koch M and Zhang W L 2010 Opt. Express 18 13044
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[8] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[9] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[10] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[11] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[12] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[13] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[14] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[15] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
No Suggested Reading articles found!