Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046806    DOI: 10.1088/1674-1056/23/4/046806
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

An application of half-terrace model to surface ripening of non-bulk GaAs layers

Liu Ke (刘珂), Guo Xiang (郭祥), Zhou Qing (周清), Zhang Bi-Chan (张毕禅), Luo Zi-Jiang (罗子江), Ding Zhao (丁召)
College of Electronics and Information, Guizhou University, Guiyang 550025, China
Abstract  In order to predict the actual quantity of non-bulk GaAs layers after long-time homoepitaxy on GaAs (001) by theoretical calculation, a half-terrace diffusion model based on thermodynamics is used to calculate the ripening time of GaAs layers to form a flat morphology in annealing. To verify the accuracy of the calculation, real space scanning tunneling microscopy images of GaAs surface after different annealing times are obtained and the roughness of the GaAs surface is measured. The results suggest that the half terrace model is an accurate method with a relative error of about 4.1%.
Keywords:  scanning tunneling microscopy      Ⅲ-Ⅴ semiconductors      annealing      diffusion in nanoscale solids  
Received:  31 July 2013      Revised:  05 November 2013      Accepted manuscript online: 
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  81.05.Ea (III-V semiconductors)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  66.30.Pa (Diffusion in nanoscale solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60866001) and the Doctorate Foundation of the Education Ministry of China (Grant No. 20105201110003).
Corresponding Authors:  Ding Zhao     E-mail:  zding@gzu.edu.cn
About author:  68.37.Ef; 81.05.Ea; 81.40.Ef; 66.30.Pa

Cite this article: 

Liu Ke (刘珂), Guo Xiang (郭祥), Zhou Qing (周清), Zhang Bi-Chan (张毕禅), Luo Zi-Jiang (罗子江), Ding Zhao (丁召) An application of half-terrace model to surface ripening of non-bulk GaAs layers 2014 Chin. Phys. B 23 046806

[1] Kaganer V M, Braun W and Sabelfeld K K 2007 Phys. Rev. B 76 075415
[2] Haußer F and Voigt A 2005 Phys. Rev. B 72 035437
[3] Burlakov V M 2006 Phys. Rev. Lett. 97 155703
[4] Ostwald W 1900 Zeitschrift für Physikalische Chemie 34 495
[5] Yao J H and Laradji M 1993 Phys. Rev. E 47 2695
[6] Simonsen S B, Chorkendorff I, Dahl S, Skoglundh M, Sehested J and Helveg S 2011 J. Catal. 281 147
[7] Alloyeau D, Prévot G, Le Bouar Y, Oikawa T, Langlois C, Loiseau A and Ricolleau C 2010 Phys. Rev. Lett. 105 255901
[8] LaBella V P, Krause M R, Ding Z and Thibado P M 2005 Surf. Sci. Rep. 60 1
[9] Ding Z, Bullock D W, Thibado P M, LaBella V P and Mullen K 2003 Surf. Sci. 540 491
[10] Ding Z, Bullock D W, Thibado P M, LaBella V P and Mullen K 2003 Phys. Rev. Lett. 90 216109
[11] LaBella V P, Bullock D W, Ding Z, Emery C, Venkatesan A, Oliver W F, Salamo G J, Thibado P M and Mortazavi M 2001 Science 292 1518
[12] Wei Q, Lian J, Lu W and Wang L 2008 Phys. Rev. Lett. 100 076103
[13] Heyn C, Stemmann A, Schramm A, Welsch H, Hansen W and Nemcsics Á 2007 Phys. Rev. B 76 075317
[14] McLean J G, Krishnamachari B, Peale D R, Chason E, Sethna J P and Cooper B H 1997 Phys. Rev. B 55 1811
[15] Zhang Y W 1999 Appl. Phys. Lett. 75 205
[16] Sadowski T and Ramprasad R 2010 Appl. Phys. Lett. 96 101906
[17] Bales G S and Zangwill A 1990 Phys. Rev. B 41 5500
[18] LaBella V P, Bullock D W, Ding Z, Emery C, Harter W G and Thibado P M 2000 J. Vac. Sci. Technol. A 18 1526
[19] Ratsch C, Nelson M D and Zangwill A 1994 Phys. Rev. B 50 14489
[20] Nishzawa T 2006 Thermodynamics of Microstructure (Beijing: Chemical Industry Press) pp. 140-143, 183 (in Chinese)
[21] Liu K, Zhou Q, Zhou X, Guo X, Luo Z J, Wang J H, Hu M Z and Ding Z 2013 Chin. Phys. B 22 26801
[22] Xiang R, Lung M T and Lam C H 2010 Phys. Rev. E 82 021601
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[5] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[6] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[7] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[8] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[9] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[10] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[11] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[12] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[13] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[14] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[15] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
No Suggested Reading articles found!