CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations |
Liu Qi-Jun (刘其军)a, Zhang Ning-Chao (张宁超)a, Liu Fu-Sheng (刘福生)a, Liu Zheng-Tang (刘正堂)b |
a Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology,Southwest Jiaotong University, Chengdu 610031, China; b State Key Laboratory of Solidification Processing, School of Materials Science and Engineering,Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lamé constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.
|
Received: 30 July 2013
Revised: 27 September 2013
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.22.+i
|
(Electronic structure of liquid metals and semiconductors and their Alloys)
|
|
62.20.dq
|
(Other elastic constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347199, 11072225, 10874141, and 10974160), the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20130184120028), the National Basic Research Program of China (Grant No. 2011CB808201), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. SWJTU112T23 and 2682013CX054). |
Corresponding Authors:
Liu Qi-Jun
E-mail: qijunliu@home.swjtu.edu.cn
|
About author: 71.15.Mb; 71.22.+i; 62.20.dq |
Cite this article:
Liu Qi-Jun (刘其军), Zhang Ning-Chao (张宁超), Liu Fu-Sheng (刘福生), Liu Zheng-Tang (刘正堂) Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations 2014 Chin. Phys. B 23 047101
|
[1] |
Zheng X H, Huang A P, Yang Z C, Xiao Z S, Wang M and Cheng G A 2011 Acta Phys. Sin. 60 017702 (in Chinese)
|
[2] |
Monaghan S, Hurley P K, Cherkaoui K, Negara M A and Schenk A 2009 Solid State Electron. 53 438
|
[3] |
Xiong K and Robertson J 2005 Microelectron. Eng. 80 408
|
[4] |
Zhu S Y, Xu J P, Wang L S and Huang Y 2013 Chin. Phys. B 22 097301
|
[5] |
Xiong K, Robertson J, Gibson M C and Clark S J 2005 Appl. Phys. Lett. 87 183505
|
[6] |
Wang J, Li H P and Stevens R 1992 J. Mater. Sci. 27 5397, and the references therein
|
[7] |
Wang J, Ponton C B and Marouis P M 1994 J. Mater. Sci. 29 3577
|
[8] |
Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K and Kikegawa T 2001 J. Am. Ceram. Soc. 84 1369
|
[9] |
Franta D, Ohlídal I, Nečas D, Vižd'a F, Caha O, Hasoñ M and Pokorný P 2011 Thin Solid Films 519 6085
|
[10] |
Aarik J, Mändar H, Kirm M and Pung L 2004 Thin Solid Films 466 41
|
[11] |
Mergia K, Liedtke V, Speliotis Th, Apostolopoulos G and Messoloras S 2009 Adv. Mater. Res. 59 87
|
[12] |
Lowther J E, Dewhurst J K, Leger J M and Haines J 1999 Phys. Rev. B 60 14485
|
[13] |
Mirgorodsky A P and Quintard P E 1999 J. Am. Ceram. Soc. 82 3121
|
[14] |
Robertson J 2006 Rep. Prog. Phys. 69 327
|
[15] |
Pereira L, Barquinha P, Fortunato E and Martins R 2006 Mater. Sci. Semicond. Proc. 9 1125
|
[16] |
Chen W, Sun Q Q, Ding S J, Zhang D W and Wang L K 2006 Appl. Phys. Lett. 89 152904
|
[17] |
Hou Z F, Gong X G and Li Q 2008 J. Phys.: Condens. Matter 20 135206
|
[18] |
Chen T J and Kuo C L 2011 J. Appl. Phys. 110 064105
|
[19] |
Terki R, Bertrand G, Aourag H and Coddet C 2008 Mater. Lett. 62 1484
|
[20] |
Caravaca M A and Casali R A 2005 J. Phys.: Condens. Matter 17 5795
|
[21] |
Zhao X and Vanderbilt D 2002 Phys. Rev. B 65 233106
|
[22] |
Perevalov T V, Gritsenko V A, Erenburg S B, Badalyan A M, Wong H and Kim C W 2007 J. Appl. Phys. 101 053704
|
[23] |
Leger J M, Atouf A, Tomaszewski P E and Pereira A S 1993 Phys. Rev. B 48 93
|
[24] |
Kang J, Lee E C and Chang K J 2003 Phys. Rev. B 68 054106
|
[25] |
Jaffe J E, Bachorz R A and Gutowski M 2005 Phys. Rev. B 72 144107
|
[26] |
Tang C and Ramprasad R 2010 Phys. Rev. B 81 161201(R)
|
[27] |
Kirsch P D, Quevedo-Lopez M A, Li H J, Senzaki Y, Peterson J J, Song S C, Krishnan S A, Moumen N, Barnett J, Bersuker G, Hung P Y, Lee B H, Lafford T, Wang Q, Gay D and Ekerdt J G 2006 J. Appl. Phys. 99 023508
|
[28] |
Kukli K, Ritala M, Pilvi T, Aaltonen T, Aarik J, Lautala M and Leskelä M 2005 Mater. Sci. Eng. B 118 112
|
[29] |
Zhang L S and Xu H 2008 High Power Laser Particle Beams 20 894 (in Chinese)
|
[30] |
Lucovsky G, Seo H, Fleming L B, Lüning J, Lysaght P and Bersuker G 2007 Surf. Sci. 601 4236
|
[31] |
Chen G H, Hou Z F and Gong X G 2008 Comput. Mater. Sci. 44 46
|
[32] |
Lu H L, Xu M, Chen W, Ren J, Ding S J and Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese)
|
[33] |
Tuttle B R, Tang C G and Ramprasad R 2007 Phys. Rev. B 75 235324
|
[34] |
Shin M, Park Y, Kong K J and Chang H 2011 Appl. Phys. Lett. 98 173501
|
[35] |
Gavartin J L and Shluger A L 2007 Microelectron. Eng. 84 2412
|
[36] |
Wang W, Gong C, Shan B, Wallace R M and Cho K 2011 Appl. Phys. Lett. 98 232113
|
[37] |
Scheidecker R W, Hunter O Jr and Calderwood F W 1979 J. Mater. Sci. 14 2284
|
[38] |
de Boer P K and de Groot R A 1998 J. Phys.: Condens. Matter 10 10241
|
[39] |
Luo X, Zhou W, Ushakov S V, Navrotsky A and Demkov A A 2009 Phys. Rev. B 80 134119
|
[40] |
Silva C C, Leite Alves H W and Scolfaro L M R 2007 AIP Conf. Proc. 893 311
|
[41] |
Jiang H, Gomez-Abal R I, Rinke P and Scheffler M 2010 Phys. Rev. B 81 085119
|
[42] |
Debernardi A and Fanciulli M 2006 Mater. Sci. Semicond. Proc. 9 1014
|
[43] |
Muñoz Ramo D, Gavartin J L, Shluger A L and Bersuker G 2007 Microelectron. Eng. 84 2362
|
[44] |
Weng H M and Dong J M 2006 Phys. Rev. B 73 132410
|
[45] |
Zhang W, Chen W Z, Sun J Y and Jiang Z Y 2013 Chin. Phys. B 22 016601
|
[46] |
Dutta G 2009 Appl. Phys. Lett. 94 012907
|
[47] |
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 567 220
|
[48] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[49] |
Liu Q J, Liu Z T and Feng L P 2011 Adv. Mater. Res. 216 341
|
[50] |
He G, Zhu L Q, Liu M, Fang Q and Zhang L D 2007 Appl. Surf. Sci. 253 3413
|
[51] |
Afanasév V V, Stesmans A, Chen F, Shi X and Campbell S A 2002 Appl. Phys. Lett. 81 1053
|
[52] |
Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
|
[53] |
Shen X C 1992 Semiconductor Spectroscopy and Optical Properties, 2nd edn. (Beijing: Science Press) p. 76 (in Chinese)
|
[54] |
Okoye C M I 2003 J. Phys.: Condens. Matter 15 5945, and the references therein
|
[55] |
Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
|
[56] |
Asahi R, Taga Y, Mannstadt W and Freeman A J 2000 Phys. Rev. B 61 7459
|
[57] |
Chen H S 1996 Elastic Anisotropy of Metal (Beijing: Metallurgy Industry Press) p. 20 (in Chinese)
|
[58] |
Tian S 2004 Materials Physical Properties (Beijing: Beijing University of Aeronautics and Astronautics Press) p. 379 (in Chinese)
|
[59] |
Fast L, Wills J M, Johansson B and Eriksson O 1995 Phys. Rev. B 51 17431
|
[60] |
Al-Khatatbeh Y, Lee K K M and Kiefer B 2010 Phys. Rev. B 82 144106
|
[61] |
Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon) p. 82
|
[62] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
|
[63] |
Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner) p. 574
|
[64] |
Reuss A 1929 Z. Angew. Math. Mech. 9 49
|
[65] |
Hill R 1952 Proc. Phys. Soc. Lond. 65 349
|
[66] |
Shan T R, Devine B D, Kemper T W, Sinnott S B and Phillpot S R 2010 Phys. Rev. B 81 125328
|
[67] |
Desgreniers S and Lagarec K 1999 Phys. Rev. B 59 8467
|
[68] |
Pugh S F 1954 Philos. Mag. 45 823
|
[69] |
Caravaca M A, Miño J C, Pérez V J, Casali R A and Ponce C A 2009 J. Phys.: Condens. Matter 21 015501
|
[70] |
Shi S Q, Ke X Z, Zhang H, Ouyang C Y, Lei M S and Chen L Q 2009 Phys. Lett. A 373 4096
|
[71] |
Labat F, Baranek P, Domain C, Minot C and Adamo C 2007 J. Chem. Phys. 126 154703
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|