Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046804    DOI: 10.1088/1674-1056/23/4/046804
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

Han Le (韩乐)a b, Wang Sheng-Kai (王盛凯)b, Zhang Xiong (张雄)a, Xue Bai-Qing (薛百清)b, Wu Wang-Ran (吴汪然)c, Zhao Yi (赵毅)c, Liu Hong-Gang (刘洪刚)b
a Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China;
b Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
c School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interfacial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which the Al2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ion/Ioff) ratio of above 1× 104, a subthreshold slope of ~ 120 mV/dec, and a peak hole mobility of 265 cm2/V· s are achieved.
Keywords:  GeOx interfacial layer      thermal oxidation      GeO desorption      Al2O3  
Received:  03 August 2013      Revised:  23 October 2013      Accepted manuscript online: 
PACS:  68.35.Ct (Interface structure and roughness)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00605 and 2011CBA00607), the National Natural Science Foundation of China (Grant No. 61204103), and the National Science & Technology MajorProject of China (Grant No. 2011ZX02708-003).
Corresponding Authors:  Wang Sheng-Kai, Liu Hong-Gang     E-mail:  wangshengkai@ime.ac.cn;liuhonggang@ime.ac.cn
About author:  68.35.Ct; 73.40.Qv; 85.30.Tv

Cite this article: 

Han Le (韩乐), Wang Sheng-Kai (王盛凯), Zhang Xiong (张雄), Xue Bai-Qing (薛百清), Wu Wang-Ran (吴汪然), Zhao Yi (赵毅), Liu Hong-Gang (刘洪刚) Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge 2014 Chin. Phys. B 23 046804

[1] Lee M L, Leitz C W, Cheng Z, Pitera A J, Langdo T, Currie M T, Taraschi G, Fitzgerald E A and Antoniadis D A 2001 Appl. Phys. Lett. 79 3344
[2] Hu M J, Li C, Xu J F, Lai H K and Chen S Y 2011 Acta Phys. Sin. 60 078102 (in Chinese)
[3] Chang H D, Sun B, Xue B Q, Liu G M, Zhao W, Wang S K and Liu H G 2013 Chin. Phys. B 22 077306
[4] Xie R L and Zhu C X 2007 IEEE Electron. Dev. Lett. 28 976
[5] Xie R L, Yu M B, Lai M Y, Chan L and Zhu C X 2008 Appl. Phys. Lett. 92 163505
[6] Taoka N, Harada M, Yamashita Y, Yamamoto T, Sugiyama N and Takagi S 2008 Appl. Phys. Lett. 92 113511
[7] Seo J W, Dieker Ch, Locquet J P, Mavrou G and Dimoulas A 2005 Appl. Phys. Lett. 87 221906
[8] Takahashi T, Nishimura T, Chen L, Sakata S, Kita K and Toriumi T 2007 IEDM Tech. Dig., December 10, 2007, Washington DC, USA, p. 697
[9] Sasada T, Nakakita Y, Takenaka M and Takagi S 2009 J. Appl. Phys. 106 073716
[10] Lee C H, Tabata T, Nishimura T, Nagashio K, Kita K and Toriumi A 2009 Appl. Phys. Express 2 071404
[11] Zhang R, Iwasaki T, Taoka N, Takenaka M and Takagi S 2012 IEEE Trans. Electron. Dev. 59 335
[12] Kuzum D, Krishnamohan T, Pethe A J, Okyay A K, Oshima Y, Sun Y, Mc Vittie J P, Pianetta P A, McIntyre P C and Saraswat K C 2008 IEEE Electron. Dev. Lett. 29 328
[13] Wada A, Samukawa S, Zhang R and Takagi S 2012 Solid-State Device Research Conference, September 17, 2012, Bordeaux, France, p. 85
[14] Murad S N A, Baine P T, McNeill D W, Mitchell S J N, Armstrong B M, Modreanu M, Hughes G and Chellappan R K 2012 Solid-State Electronics 78 136
[15] Wang S K, Kita K, Lee C H, Tabata T, Nishimura T, Nagashio K and Toriumi A 2010 J. Appl. Phys. 108 054104
[16] Xue B Q, Chang H D, Sun B, Wang S K and Liu H G 2012 Chin. Phys. Lett. 29 046801
[17] Feng Q, Xing T, Wang Q, Feng Q, Li Q, Bi Z W, Zhang J C and Hao Y 2012 Chin. Phys. B 21 17304
[18] Zhou H, Ng G I, Liu Z H and Arulkumaran S 2011 Appl. Phys. Express 4 104102.
[19] Lee C H, Nishimura T, Nagashio K, Kita K and Toriumi A 2011 IEEE Trans. Electron. Dev. 58 1295
[20] Kita K, Suzuki S, Nomura H, Takahashi T, Nishimura T and Toriumi A 2008 Jpn. J. Appl. Phys. 47 2349
[21] Tabata T, Lee C H, Nishimura T, Wang S K, Kita K and Toriumi A 2011 Ext. Abstr. Solid State Devices and Materials, September 28, 2011, Nagoya, Japan, p. 883
[22] Bellenger F, Houssa M, Delabie A, Afanasiev V, Conard T, Caymax M, Meuris M, De Meyer K and Heyns M M 2008 J. Electrochem. Soc. 155 G33
[23] Nakakita Y, Nakakne R, Sasada T, Takenaka M and Takagi S 2011 Jpn. J. Appl. Phys. 50 010109
[24] Matsubara H, Sasada T, Takenaka M and Takagi S 2008 Appl. Phys. Lett. 93 032104
[25] Martens K, Jaeger B D, Bonzom R, Steenbergen J V, Meuris M, Groeseneken G and Maes H 2006 IEEE Electron. Dev. Lett. 27 405
[26] Takagi S, Zhang R, Kim S H, Taoka N, Yokoyama M, Suh J K, Suzuki R and Takenaka M 2012 IEDM Tech. Dig., December 10, 2012, San Francisco, USA, p. 505
[1] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[4] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[5] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[6] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[7] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[8] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[9] Synthesis and characterization of β-Ga2O3@GaN nanowires
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
[10] Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer
Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春). Chin. Phys. B, 2018, 27(1): 018503.
[11] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[12] Influences of different oxidants on characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(6): 067701.
[13] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
[14] The p-type ZnO thin films obtained by a reversed substitution doping method of thermal oxidation of Zn3N2 precursors
Bing-Sheng Li(李炳生), Zhi-Yan Xiao(肖芝燕), Jian-Gang Ma(马剑刚), Yi-Chun Liu(刘益春). Chin. Phys. B, 2017, 26(11): 117101.
[15] Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study
Fei Wang(王飞), Wen-Sheng Lai(赖文生), Ru-Song Li(李如松), Bin He(何彬), Su-Fen Li(黎素芬). Chin. Phys. B, 2016, 25(6): 066804.
No Suggested Reading articles found!