Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066804    DOI: 10.1088/1674-1056/25/6/066804
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study

Fei Wang(王飞)1,2, Wen-Sheng Lai(赖文生)1, Ru-Song Li(李如松)2, Bin He(何彬)2, Su-Fen Li(黎素芬)2
1 Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
2 Xi’an High Technology Research Center, Xi’an 710025, China
Abstract  

Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al2O3 are investigated by the first principles projector-augmented wave method. It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary (GB) plane and reaches the minimum on the GB plane (at the atomic layer next to the GB) for an O (Al) vacancy. The O vacancy located on the GB plane can attract other vacancies nearby to form an O-O di-vacancy while the Al vacancy cannot. Moreover, the O-O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane, which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al2O3.

Keywords:  α-Al2O3      grain boundary (GB)      vacancy interaction  
Received:  19 December 2015      Revised:  19 January 2016      Accepted manuscript online: 
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
Fund: 

Project supported by the National Key Basic Research and Technology Program, China (Grant No. 2010CB731601) and the National Natural Science Foundation of China (Grant No. 50871057).

Corresponding Authors:  Wen-Sheng Lai     E-mail:  wslai@tsinghua.edu.cn

Cite this article: 

Fei Wang(王飞), Wen-Sheng Lai(赖文生), Ru-Song Li(李如松), Bin He(何彬), Su-Fen Li(黎素芬) Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study 2016 Chin. Phys. B 25 066804

[1] Aiello A, Ciampichetti A and Benamati G 2004 J. Nucl. Mater. 329 1398
[2] Li L, Sang G, Zhang P C and Jiang G 2007 Acta Phys. Chim. Sin. 23 1912
[3] Zhang G K, Wang X L, Xiong Y F, Shi Y, Song J F and Luo D L 2013 Int. J. Hydrogen Energ. 38 1157
[4] Hollenberg G W, Simonen E P, Kalinin G and Terlain A 1995 Fusion Engineering and Design 28 190
[5] Forcey K S, Ross D K and Wu C H 1991 J. Nucl. Mater. 182 36
[6] Belonoshko A B, Rosengren A, Dong Q, Hultquist G and Leygraf 2004 Phy. Rev. B 69 024302
[7] Cannon R M, Rhodes W H and Heuer A H 1980 J. Am. Ceram. Soc. 63 46
[8] Heuer A H, Tighe N J and Cannon R M 1980 J. Am. Ceram. Soc. 63 53
[9] Lagerlof K P D, Mitchell T E and Heuer A H 1989 J. Am. Ceram. Soc. 72 2159
[10] Heuer A H and Lagerlof K P D 1999 Philos. Mag. Lett. 79 619
[11] Dienes G J, Welch D O, Fisher C R, Hatcher R D, Lazareth O and Samberg M 1975 Phys. Rev. B 11 3060
[12] Catlow C R A, James R, Mackrodt W C and Stewart R F 1982 Phys. Rev. B 25 1006
[13] Grimes R W 1994 J. Am. Ceram. Soc. 77 378
[14] Lagerlof K P D and Grimes R W 1998 Acta Mater. 46 5689
[15] Matsunaga K, Tanaka T, Yamamoto T and Ikuhara Y 2003 Phys. Rev. B 68 085110.
[16] Xu Y N, Gu Z Q, Zhong X Fu and Ching WY 1997 Phys. Rev. B 56 7277
[17] Hoche T and Ruhle M 1996 J. Am. Ceram. Soc. 79 1961
[18] Hoche T, Kenway P R, Kleebe H J, Finnis M W and Ruhle M 1994 J. Phys. Chem. Solids 55 1067
[19] Nakamura K, Mizoguchi T, Shibata N, Matsunaga K, Yamamoto T and Ikuhara Y 2007 Phys. Rev. B 75 184109
[20] Takahashi N, Mizoguchi T, Tetsuya T 2009 Mater. Trans. 50 1019
[21] Fabris S, Nufer S, Elsasser C and Gemming T 2002 Phys. Rev. B 66 155415
[22] Marinopoulos A G, Nufer S and Elsasser C 2001 Phys. Rev. B 63 165112
[23] Chen F R, Chu C C, Wang J Y and Chang L 1995 Phi. Mag. A 72 529
[24] Blochl P E 1994 Phys. Rev. B 50 17953.
[25] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[26] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Lei Y K, Yong Y, Duan Z Y and Wang G F 2013 Phys. Rev. B 87 214105
[30] Ou Y D and Lai W S 2011 Nucl. Instrum. Method Phys. Res. B 269 1720
[1] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[2] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
No Suggested Reading articles found!