Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037901    DOI: 10.1088/1674-1056/23/3/037901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical research on electron beam modulation in a field-emission cold cathode electron gun

Li Xing-Xing (李兴兴)a, Yuan Xue-Song (袁学松)a, Zhang Yu (张宇)b, Yan Yang (鄢扬)a b
a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Province Key Laboratory of Display Material and Technology, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Abstract  In order to develop miniaturized and integrated electron vacuum devices, the electron beam modulation in a field-emission (FE) electron gun based on carbon nanotubes is researched. By feeding a high-frequency field between the cathode and the anode, the steady FE electron beam can be modulated in the electron gun. The optimal structure of the electron gun is discovered using 3D electromagnetism simulation software, and the FE electron gun is simulated by PIC simulation software. The results show that a broadband (74–114 GHz) modulation can be achieved by the electron gun with a rhombus channel, and the modulation amplitude of the beam current increases with the increases in the input power and the electrostatic field.
Keywords:  carbon nanotubes      cold cathode      field emission      electron gun  
Received:  24 July 2013      Revised:  13 September 2013      Accepted manuscript online: 
PACS:  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
  41.85.-p (Beam optics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB933603) and the National Natural Science Foundation of China (Grant Nos. U1134006 and 61101041).
Corresponding Authors:  Yuan Xue-Song     E-mail:  yuanxs@uestc.edu.cn

Cite this article: 

Li Xing-Xing (李兴兴), Yuan Xue-Song (袁学松), Zhang Yu (张宇), Yan Yang (鄢扬) Theoretical research on electron beam modulation in a field-emission cold cathode electron gun 2014 Chin. Phys. B 23 037901

[1] Sun L M, Yuan X S, Zhang Y, Li X Y, Yang H and Yan Y 2013 J. Infrared Millim. Waves 32 400
[2] Wei Z 2001 Vacuum Microelectronics (New York: John Wiley & Sons) pp. 13–30
[3] Wang Y Y, Li Y A, Xu J S and Gu G R 2012 Chin. Phys. B 21 087902
[4] Legagneux P, Sech N L, Guiset P, Gangloff L, Cojocaru C, Schnell J P, Pribat D, Teo K B K, Robertson J, Milne W I, Andre F, Rozier Y and Dieumegard D 2009 Vacuum Electronics Conference IVEC ’09. IEEE International, April 28–30, 2009 Rome, Italy, p. 80
[5] Li Z H and Wang M 2001 Acta Phys. Sin. 50 790 (in Chinese)
[6] Zhang Y, Deng S Z, Duan C Y, Chen J and Xu N S 2008 J. Vac. Sci. Technol. B 26 106
[7] Guo P S, Chen T, Cao Z Y, Zhang Z J, Chen Y W and Sun Z 2007 Acta Phys. Sin. 56 6705 (in Chinese)
[8] Zhao X Y, Liu W M, Hou S M, Zhao X Y, Shi Z J, Gu Z N, Liu W M and Xue Z Q 2001 Acta Phys. Sin. 50 1805 (in Chinese)
[9] Liao F J 2008 Vacuum Electronics (2nd edn.) (Beijing: National Defence Industry Press) p. 193 (in Chinese)
[10] Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J and Milne W I 2005 Nature 437 968
[11] Xu N S and Huq S E 2005 Materials Science and Engineering R Reports 48 47
[12] Chen H and Jiang J P 1986 Cathode Electronics (Xi’an: Xidian University Publishing House) pp. 90–104 (in Chinese)
[13] Li C, Zhang Y, Mann M, Hasko D, Lei W, Wang B P, Chu D P, Pribat D, Amaratunga G A J and Milne W I 2010 Appl. Phys. Lett. 97 113107
[14] Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S and Yan Y 2012 Acta Phys. Sin. 61 216101 (in Chinese)
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[6] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[7] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[8] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[9] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[10] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[11] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[12] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[13] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[14] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[15] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
No Suggested Reading articles found!