Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094210    DOI: 10.1088/1674-1056/27/9/094210
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film

Qianqian Huang(黄千千)1, Chuanhang Zou(邹传杭)1, Tianxing Wang(王天行)1,5, Mohammed Al Araimi2,3,4, Aleksey Rozhin2,3, Chengbo Mou(牟成博)1
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China;
2 Aston Institute of Photonic Technologies(AIPT), Aston University, Birmingham, B4 7ET, United Kingdom;
3 Nanoscience Research Group, Aston University, Birmingham, B4 7ET, United Kingdom;
4 Al Musanna College of Technology, Muladdah, Al Musanna, P. O. Box 191, P. C. 314, Sultanate of Oman;
5 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

We demonstrate a passively harmonic mode-locked (PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol (CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller (PC), the 54th harmonic pulses at the L-band are generated with the side mode suppression ratio (SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.

Keywords:  passively harmonic mode locking      L-band      Er-doped fiber laser      carbon nanotubes film  
Received:  16 April 2018      Revised:  23 May 2018      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.70.-a (Optical materials)  
Corresponding Authors:  Chengbo Mou     E-mail:

Cite this article: 

Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博) Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film 2018 Chin. Phys. B 27 094210

[1] Srivastava A, Radic S, Wolf C, Centanni J, Sulhoff J, Kantor K and Sun Y 2000 IEEE Photon. Technol. Lett. 12 1570
[2] Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423
[3] Jones R J and Diels J C 2001 Phys. Rev. Lett. 86 3288
[4] Schlager J B, Hale P D and Franzen D L 1993 Microwave Opt. Technol. Lett. 6 835
[5] Tamura K, Ippen E P, Haus H A and Nelson L E 1993 Opt. Lett. 18 1080
[6] Luo Z C, Luo A P and Xu W C 2011 IEEE Photon. J. 3 64
[7] Mou C, Wang H, Bale B G, Zhou K, Zhang L and Bennion I 2010 Opt. Express 18 18906
[8] Rozhin A G, Sakakibara Y, Namiki S, Tokumoto M, Kataura H and Achiba Y 2006 Appl. Phys. Lett. 88 051118
[9] Liu M, Zheng X W, Qi Y L, Liu H, Luo A P, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Express 22 22841
[10] Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari A 2010 Appl. Phys. Lett. 97 203106
[11] Popa D, Sun Z, Hasan T, Cho W, Wang F, Torrisi F and Ferrari A 2012 Appl. Phys. Lett. 101 153107
[12] Sun Z, Rozhin A, Wang F, Scardaci V, Milne W, White I, Hennrich F and Ferrari A 2008 Appl. Phys. Lett. 93 061114
[13] Ahmad H, Zulkifli A, Muhammad F, Zulkifli M, Thambiratnam K and Harun S 2014 Appl. Phys. B 115 407
[14] Kwon W S, Lee H, Kim J H, Choi J, Kim K S and Kim S 2015 Opt. Express 23 7779
[15] Lecaplain C and Grelu P 2013 Opt. Express 21 10897
[16] Zou C, Wang T, Yan Z, Huang Q, AlAraimi M, Rozhin A and Mou C 2018 Opt. Commun. 406 151
[17] Huang Q, Wang T, Zou C, AlAraimi M, Rozhin A and Mou C 2018 Chin. Opt. Lett. 16 030019
[18] Mou C, Sergeyev S, Rozhin A and Turistyn S 2011 Opt. Lett. 36 3831
[19] Yan D, Li X, Zhang S, Han M, Han H and Yang Z 2016 Opt. Express 24 739
[20] Franco P, Midrio M, Tozzato A, Romagnoli M and Fontana F 1994 J. Opt. Soc. Am. B 11 1090
[21] Mou C, Arif R, Rozhin A and Turitsyn S 2012 Opt. Mater. Express 2 884
[22] Jiang K, Fu S, Shum P and Lin C 2010 IEEE Photon. Technol. Lett. 22 754
[23] Luo J L, Li L, Ge Y Q and Jin X X 2014 IEEE Photon. Technol. Lett. 26 2438
[24] Jun C S, Choi S Y, Rotermund F, Kim B Y and Yeom D I 2012 Opt. Lett. 37 1862
[25] Tao S, Xu L, Chen G, Gu C and Song H 2016 J. Lightwave Technol. 34 2354
[1] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[2] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[5] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[6] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[7] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[8] Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots
Qi Li-Mei (亓丽梅), Li Chao (李超), Fang Guang-You (方广有), Li Shi-Chao (李士超). Chin. Phys. B, 2015, 24(10): 107802.
[9] Dual-band frequency selective surface with large band separation and stable performance
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Lin Bao-Qin(林宝勤), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), Wang Xu-Hua(王徐华), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(5): 054101.
[10] Dual-band frequency selective surface with quasi-elliptic bandpass response
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(3): 030301.
[11] The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation
Yan Feng-Ping(延凤平), Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2007, 16(6): 1700-1703.
No Suggested Reading articles found!