Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037801    DOI: 10.1088/1674-1056/23/3/037801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Speckle intensity images of target based on Monte Carlo method

Wu Ying-Li (武颖丽), Wu Zhen-Sen (吴振森)
Xidian University, School of Science, Xi’an 710071, China
Abstract  Speckle intensity in the detector plane is deduced in the free-space optical system and imaging system based on Van Cittert–Zernike theorem. The speckle intensity images of plane target and conical target are obtained by using the Monte Carlo method and measured experimentally. The results show that when the range extent of target is smaller, the speckle size along the same direction become longer, and the speckle size increase with increasing incident light wavelengths. The speckle size increases and the speckle intensity images of target is closer to the actual object when the aperture scale augments. These findings are useful to access the target information by speckle in laser radar systems.
Keywords:  laser scattering      Monte Carlo method      speckle      intensity images  
Received:  02 May 2013      Revised:  03 August 2013      Accepted manuscript online: 
PACS:  78.20.hc (Laser ultrasonics)  
  78.20.Ek (Optical activity)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Sciences Foundation of China (Grant No. 61172031) and the Fundamental Research Funds for the Central Universities of China (Grant No. K50511070005).
Corresponding Authors:  Wu Ying-Li     E-mail:  ylwu@xidian.edu.cn

Cite this article: 

Wu Ying-Li (武颖丽), Wu Zhen-Sen (吴振森) Speckle intensity images of target based on Monte Carlo method 2014 Chin. Phys. B 23 037801

[1] David G V, John D G and Paul S I 1991 Appl. Opt. 30 3333
[2] David G V, Keith A. Bush and Paul S Idell 1997 Appl. Opt. 36 1781
[3] Jacob D, Gatt P and Nichols T 2008 Proc. SPIE 6950 69500L
[4] Steinvall O, Sjöqvist L, Henriksson M and Jonsson P 2008 Proc. SPIE 6950 695002
[5] Grnwall C, Steinvall O, Gustafsson F and Chevalier T 2007 Opt. Eng. 46 106
[6] Song H S, Liu M, Liu G Y, Xu Z W, Teng S Y and Cheng C F 2010 Chin. Phys. B 19 074204
[7] Liu W J, Gao R X and Qu S L 2010 Chin. Phys. B 19 024204
[8] Zeng Y G, Wang M Y, Feng G P, Liang X J and Yang G J 2013 Opt. Lett. 38 001313
[9] Feng G P, Chen J B, Lu X L, Han D and Zeng Y G 2013 Opt. Lett. 38 002654
[10] Goodman J 2006 Speckle Phenomena in Optics: Theory and Applications (1st edn.) (Colorado: Roberts and Company Publishers) p. 195
[1] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[2] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[3] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[4] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[5] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[6] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[7] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[8] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[9] Decoherence of fiber light sources using a single-trench fiber
Huahui Zhang(张华辉), Weili Zhang(张伟利), Zhao Wang(王昭), Hongyang Zhu(朱洪杨), Chao Yu(余超), Jiayu Guo(郭佳宇), Shanshan Wang(王珊珊), and Yunjiang Rao(饶云江). Chin. Phys. B, 2020, 29(12): 124210.
[10] Supersonic boundary layer transition induced by self-sustaining dual jets
Qiang Liu(刘强), Zhenbing Luo(罗振兵), Xiong Deng(邓雄), Zhiyong Liu(刘志勇), Lin Wang(王林), Yan Zhou(周岩). Chin. Phys. B, 2020, 29(1): 014704.
[11] Laser scattering, transmittance and low thermal expansion behaviors in Y2-x(ZnLi)xMo3O12 by forming regular grains
Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Bao-He Yuan(袁保合), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2019, 28(9): 096501.
[12] Tuning the intensity statistics of random speckle patterns
Fan Meng(孟凡), Yue Zhao(赵乐), Yun-Zuo Zhang(张云佐), Lei Huo(霍磊). Chin. Phys. B, 2019, 28(5): 057801.
[13] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[14] Speckle reduction by selective spatial-domain mask in digital holography
Ming-Da Liang(梁明大), Li Chen(陈丽), Yi-Hua Hu(胡义华), Wei-Tao Lin(林伟涛), Yong-Hao Chen(陈永昊). Chin. Phys. B, 2018, 27(10): 104202.
[15] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
No Suggested Reading articles found!