Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 095202    DOI: 10.1088/1674-1056/ab33ed
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration

Jianchun Ye(叶建春)1, Jun Li(李俊)2, Xiaohong Chen(陈晓红)1, Sumei Huang(黄素梅)1, Wei Ou-Yang(欧阳威)1
1 Engineering Research Center for Nanophotonics and Advanced Instrument(Ministry of Education), School of Physics and Materials Science, East China Normal University, Shanghai 200062, China;
2 Department of Electronic Science and Technology, Tongji University, Shanghai 201804, China
Abstract  

Dip-coated double-wall carbon nanotubes (DWCNTs) and titanium dioxide (TiO2) sol have been prepared and smeared onto the tip of a conductive iron needle which serves as the corona discharge anode in a needle-cylinder corona system. Compared with the discharge electrode of a CNT-coated needle tip, great advancements have been achieved with the TiO2/CNT-coated electrode, including higher discharge current, ionic wind velocity, and energy conversion efficiency, together with lower corona onset voltage and power consumption. Several parameters related to the discharge have been phenomenologically and mathematically studied for comparison. Thanks to the morphology reorientation of the CNT layer and the anti-oxidation of TiO2, better performance of corona discharge induced wind generation of the TiO2/CNT-coated electrode system has been achieved. This novel decoration may provide better thoughts about the corona discharge application and wind generation.

Keywords:  corona discharge induced wind      wind velocity      carbon nanotubes      titanium dioxide  
Received:  18 April 2019      Revised:  08 July 2019      Accepted manuscript online: 
PACS:  52.80.-s (Electric discharges)  
  52.80.Dy (Low-field and Townsend discharges)  
  52.80.Hc (Glow; corona)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61504042, 61504098, and 61771198), the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1447000), and the Fundamental Research Funds for the Central Universities, China.

Corresponding Authors:  Wei Ou-Yang     E-mail:  ouyangwei@phy.ecnu.edu.cn

Cite this article: 

Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威) Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration 2019 Chin. Phys. B 28 095202

[40] Ladouceur H D, Baronavski A P, Lohrmann D, Grounds P W and Girardi P G 2001 Opt. Commun. 189 107
[1] Robinson M 1962 Am. J. Phys. 30 366
[41] Housley D, Huddle T, Lester E and Poliakoff M 2016 Chem. Eng. J. 287 350
[2] Wu Y, Li J, Ye J, Chen X, Li H, Huang S, Zhao R and Ou-Yang W 2017 J. Phys. D:Appl. Phys. 50 395304
[42] Zhang J, Deng Y and Hao T T 2018 Chin. Phys. B 27 128101
[3] Chen I Y, Guo M Z, Yang K S and Wang C C 2013 Int. J. Heat Mass Transf. 57 285
[43] Zhu W D, Wang C W, Chen J B, Li D S, Zhou F and Zhang H L 2012 Nanotech. 23 455204
[4] Kim B, Lee S, Lee Y and Kang K H 2012 J. Electrostat. 70 438
[44] Chen X, Jiang T, Sun Z and Ou-Yang W 2015 Appl. Phys. Lett. 107 114103
[5] He X, Jia G, Tatsumi E and Liu H 2016 Innov. Food Sci. Emerg. 34 135
[45] Shin D H, Baek S H and Ko H S 2016 Int. J. Heat Mass Transf. 93 516
[6] Choi S, Puligundla P and Mok C 2017 LWT-Food Sci. Tech. 75 323
[46] Zhou D, Tang J, Kang P, Wei L and Zhang C 2018 J. Electrostat. 96 99
[7] Wen T Y, Wang H C, Krichtafovitch I and Marnishev A V 2015 J. Electrostat. 73 117
[47] Alivov Y, Klopfer M and Molloi S 2010 Appl. Phys. Lett. 96 243502
[8] Yang Z, Song H M, Jin D, Jia M and Wang K 2018 Chin. Phys. B 27 085205
[48] Zhang G and Huang S Y 2013 Physics 42 100
[9] Timmermann E, Prehn F, Schmidt M, Höft H, Brandenburg R and Kettlitz M 2018 J. Phys. D:Appl. Phys. 51 164003
[49] Zhou K K, Xu N and Xie G F 2018 Chin. Phys. B 27 026501
[10] Drew D S and Pister K S J 2017 Micromachines 8 141
[50] Khosravifard E, Salavati-Niasari M, Dadkhah M and Sodeifian G 2012 J. Nanostruct. 2 191
[11] Audier P, Fénot M, Bénard N and Moreau E 2016 Appl. Phys. Lett. 108 084103
[12] Azooz A A and Talal S K 2011 Chin. Phys. Lett. 28 115202
[13] Eifert A, Baier T and Hardt S 2013 Appl. Phys. Lett. 103 023114
[14] Lee J R and Lau E V 2017 Appl. Therm. Eng. 114 554
[15] Zhang Y, Liu L, Chen Y and Ouyang J 2015 J. Electrostat. 74 15
[16] Moreau E, Audier P and Benard N 2018 J. Electrostat. 93 85
[17] Chen S, van den Berg R G W and Nijdam S 2018 Plasma Sources Sci. T. 27 055021
[18] Li H, Jiang L, Guo C, Zhu J, Jiang Y, Xiao W, Fang C and Chen Z 2017 J. Electrostat. 86 59
[19] Nahan K S, Alvarez N, Shanov V and Vonderheide A 2017 J. Am. Soc. Mass Spectrom. 28 2408
[20] Bo Z, Yu K, Lu G, Mao S, Chen J and Fan F 2010 Environ. Sci. Tech. 44 6337
[21] Bo Z, Yu K, Lu G, Cui S, Mao S and Chen J 2011 Energy Environ. Sci. 4 2525
[22] Yang W, Zhu R and Zong X 2016 Nanoscale Res. Lett. 11 1
[23] Lv W Q, Wang L P, Cao Y Z, Gu Z W, Wang X F, Yan Y D and Yu F L 2016 Chin. Phys. Lett. 33 095201
[24] Ye S, Liang J, Song X, Luo S and Liang J 2016 Biosyst. Eng. 150 123
[25] Sadeghian R B and Islam M S 2011 Nat. Mater. 10 135
[26] Xu J, Xu P, Guo P, Ou-Yang W, Chen Y, Feng T, Piao X, Wang M and Sun S 2015 RSC Adv. 5 21755
[27] Song Y, Li J and Ou-Yang W 2019 IEEE Trans. Electron. Dev. 66 716
[28] Xu J, Xu P, Ou-Yang W, Chen X, Guo P, Li J, Piao X, Wang M and Sun Z 2015 Appl. Phys. Lett. 106 073501
[29] Wu Y, Li J, Ye J, Song Y, Chen X, Huang S, Sun Z and Ou-Yang W 2017 J. Alloy. Compd. 726 675
[30] Ou-Yang W, Weis M, Taguchi D, Chen X Y, Manaka T and Iwamoto M 2010 J. Appl. Phys. 107 124506
[31] Dau V T, Dinh T X, Bui T T, Tran C D, Phan H T and Terebessy T 2016 Exp. Therm. Fluid Sci. 79 52
[32] Dau V T, Tran C D, Dinh T X, Dang L B, Terebessy T and Bui T T 2018 IEEE Trans. Dielectr. Electr. Insul. 25 900
[33] Gradov O V and Gradova M A 2016 Surf. Eng. Appl. Electrochem. 52 117
[34] Robinson M 1961 Trans. Am. Inst. Elect. Eng. Part. I:Commun. Electron. 80 143
[35] Bandurin D A, Torre I, Kumar R K, Shalom M B, Tomadin A, Principi A, Auton G H, Khestanova E, Novoselov K S, Grigorieva I V, Ponomarenko L A, Geim A K and Polini M 2016 Science 351 1055
[36] Liu N, Liu J B and Yao K L 2017 AIP Adv. 7 125117
[37] Rathi S, Lee I, Kang M, Lim D, Lee Y, Yamacli S, Joh H, Kim S, Kim S, Yun S J, Choi S and Kim G 2018 Sci. Rep. 8 7144
[38] Ou-Yang W, Mitoma N, Kizu T, Gao X, Lin M F, Nabatame T and Tsukagoshi K 2014 Appl. Phys. Lett. 105 163503
[39] Nakayama K, Ou-Yang W, Uno M, Osaka I, Takimiya K and Takeya J 2013 Org. Electron. 14 2908
[40] Ladouceur H D, Baronavski A P, Lohrmann D, Grounds P W and Girardi P G 2001 Opt. Commun. 189 107
[41] Housley D, Huddle T, Lester E and Poliakoff M 2016 Chem. Eng. J. 287 350
[42] Zhang J, Deng Y and Hao T T 2018 Chin. Phys. B 27 128101
[43] Zhu W D, Wang C W, Chen J B, Li D S, Zhou F and Zhang H L 2012 Nanotech. 23 455204
[44] Chen X, Jiang T, Sun Z and Ou-Yang W 2015 Appl. Phys. Lett. 107 114103
[45] Shin D H, Baek S H and Ko H S 2016 Int. J. Heat Mass Transf. 93 516
[46] Zhou D, Tang J, Kang P, Wei L and Zhang C 2018 J. Electrostat. 96 99
[47] Alivov Y, Klopfer M and Molloi S 2010 Appl. Phys. Lett. 96 243502
[48] Zhang G and Huang S Y 2013 Physics 42 100
[49] Zhou K K, Xu N and Xie G F 2018 Chin. Phys. B 27 026501
[50] Khosravifard E, Salavati-Niasari M, Dadkhah M and Sodeifian G 2012 J. Nanostruct. 2 191
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[6] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[7] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[8] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[9] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[10] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[11] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[12] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[13] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[14] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[15] Structural transitions of SWNT filled with C60 under high pressure
Yong-gang Zou(邹永刚), Li Xu(徐莉), Kun Tian(田锟), He Zhang(张贺), Xiao-hui Ma(马晓辉), Ming-guang Yao(姚明光). Chin. Phys. B, 2016, 25(5): 056101.
No Suggested Reading articles found!