Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 048801    DOI: 10.1088/1674-1056/26/4/048801

Design and optimization of carbon nanotube/polymer actuator by using finite element analysis

Wei Zhang(张薇)1,2, Luzhuo Chen(陈鲁倬)1,2, Jianmin Zhang(张健敏)1,2, Zhigao Huang(黄志高)1,2
1 Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
2 Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen 361005, China

In recent years, actuators based on carbon nanotube (CNT) or graphene demonstrate great potential applications in the fields of artificial muscles, smart switches, robotics, and so on. The electrothermal and photothermal bending actuators based on CNT/graphene and polymer composites show large bending actuations, which are superior to traditional thermal-driven actuators. However, the influence of material parameters (thickness, temperature change, etc.) on the actuation performance needs to be further studied, because it is a critical point to the design and fabrication of high-performance actuators. In this work, finite element analysis (FEA) is employed to simulate the actuation performance of CNT/polymer actuator, which has a bilayer structure. The main focus of this work is to design and to optimize material parameters by using computational method. FEA simulation results show that each layer thickness of actuator has an important influence on the actuation deformation. A maximum curvature of 2.7 cm-1 is obtained by simulation, which is much larger than most of the actuator curvature reported in previous experiments. What is more, larger temperature change and larger difference of coefficient of thermal expansion (CTE) between two layers will result in larger bending actuation. This study is expected to provide valuable theoretical reference for the design and realization of CNT-based thermal actuator with ultra-large actuation performance.

Keywords:  actuator      carbon nanotubes      nanocomposites      finite element analysis  
Received:  21 October 2016      Revised:  17 January 2017      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  02.70.Dh (Finite-element and Galerkin methods)  
  84.60.-h (Direct energy conversion and storage)  
  81.05.Qk (Reinforced polymers and polymer-based composites)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504051, 51202031, 61574037, and 11404058), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2017J06014, 2015J01008, and 2014J01175), Fujian Provincial Program for Distinguished Young Scientists in University (Grant No. J1-1166), and Fujian Provincial Key Project of Natural Science Foundation for Young Scientists in University (Grant No. JZ160428).

Corresponding Authors:  Luzhuo Chen     E-mail:

Cite this article: 

Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高) Design and optimization of carbon nanotube/polymer actuator by using finite element analysis 2017 Chin. Phys. B 26 048801

[1] Madden J D 2007 Science 318 1094
[2] Shankar R, Ghosh T K and Spontak R J 2007 Soft Matter 3 1116
[3] Brochu P and Pei Q 2010 Macromol. Rapid Commun. 31 10
[4] Lemieux M C, Mcconney M E, Lin Y, Singamaneni S, Jiang H, Bunning T J and Tsukruk V V 2006 Nano Lett. 6 730
[5] Ikuno T, Honda S, Yasuda T, Oura K, Katayama M, Lee J G and Mori H 2005 Appl. Phys. Lett. 87 213104
[6] Chen L, Liu C, Liu K, Meng C, Hu C, Wang J and Fan S 2011 ACS Nano 5 1588
[7] Zhu S, Shabani R, Rho J, Kim Y, Hong B H, Ahn J and Cho H J 2011 Nano Lett. 11 977
[8] Hu Y, Lan T, Wu G, Zhu Z and Chen W 2014 Nanoscale 6 12703
[9] Li Q, Liu C, Lin Y, Liu L, Jiang K and Fan S 2015 ACS Nano 9 409
[10] Zeng Z H, Jin H, Zhang L P, Zhang H, Chen Z, Gao F and Zhang Z 2015 Carbon 84 327
[11] Chen L, Weng M, Zhou Z, Zhou Y, Zhang L, Li J, Huang Z, Zhang W, Liu C and Fan S 2015 ACS Nano 9 12189
[12] Chen L, Weng M, Zhang W, Zhou Z, Zhou Y, Xia D, Li J, Huang Z, Liu C, Fan S 2016 Nanoscale 8 6877
[13] Zhang X, Yu Z, Wang C, Zarrouk D, Seo J T, Cheng J C, Buchan A D, Takei K, Zhao Y, Ager J W, Zhang J, Hettick M, Hersam M C, Pisano A P, Fearing R S and Javey A 2014 Nat. Commun. 5 2983
[14] Hu Y, Wu G, Lan T, Zhao J, Liu Y and Chen W 2015 Adv. Mater. 27 7867
[15] Wang H, Wang Y, Tee B C K, Kim K, Lopez J, Cai W and Bao Z 2015 Adv. Sci. 1500103
[16] Pal S, Damle S S, Kumta P N and Maiti S 2013 Comput. Mater. Sci. 79 877
[17] Citirik E, Demirkan T and Karabacak T 2015 J. Vac. Sci. Technol. A 33 21503
[18] Zhang W, Weng M C and Chen L Z 2015 Mater. Sci. Forum 814 107
[19] Shergold O A, Fleck N A and Radford D 2006 Int. J. Impact Eng. 32 1384
[20] Liu M, Sun J and Chen Q 2009 Sensor. Actuat. A-Phys. 151 42
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[6] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[7] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[10] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[11] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[12] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[13] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[14] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[15] Influence of low ambient pressure on the performance of a high-energy array surface arc plasma actuator
Bing-Liang Tang(唐冰亮), Shan-Guang Guo(郭善广), Hua Liang(梁华)†, and Meng-Xiao Tang(唐孟潇). Chin. Phys. B, 2020, 29(10): 105204.
No Suggested Reading articles found!