Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128101    DOI: 10.1088/1674-1056/27/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Large magnetic moment at sheared ends of single-walled carbon nanotubes

Jian Zhang(张健)1,4, Ya Deng(邓娅)1,4, Ting-Ting Hao(郝婷婷)2, Xiao Hu(胡潇)1,4, Ya-Yun Liu(刘雅芸)1,4, Zhi-Sheng Peng(彭志盛)3, Jean Pierre Nshimiyimana1,4, Xian-Nian Chi(池宪念)1,4, Pei Wu(武佩)1,4, Si-Yu Liu(刘思雨)3, Zhong Zhang(张忠)1, Jun-Jie Li(李俊杰)2, Gong-Tang Wang(王公堂)3, Wei-Guo Chu(褚卫国)1, Chang-Zhi Gu(顾长志)2, Lian-Feng Sun(孙连峰)1
1 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
2 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
3 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
4 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

In this work we report that after single-walled carbon nanotubes (SWNTs) are sheared with a pair of titanium scissors, the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs. By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5±9.8 μB (Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.

Keywords:  carbon nanotubes      shear      open ends      magnetic moments  
Received:  31 May 2018      Revised:  18 September 2018      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0208403 and 2016YFA0200403), the National Natural Science Foundation of China (Grant Nos. 51472057, 11874129, 91323304, and 11674387), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09040101), and the Baotou Rare Earth Research and Development Centre, Chinese Academy of Sciences (Grant No. GZR 2018001).

Corresponding Authors:  Jian Zhang, Ya Deng, Lian-Feng Sun     E-mail:  wanggt@sdnu.edu.cn;wgchu@nanoctr.cn;slf@nanoctr.cn

Cite this article: 

Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰) Large magnetic moment at sheared ends of single-walled carbon nanotubes 2018 Chin. Phys. B 27 128101

[1] Lai D 2001 Rev. Mod. Phys. 73 629
[2] Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, DubonosS V and Firsov A A 2005 Nature 438 197
[4] TsuiD C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[5] Yu R, ZhangW, Zhang H, Zhang S, Dai X and Fang Z 2010 Science 329 61
[6] Qi Y, Lv S, Du A and Yu N 2016 Chin. Phys. B 25 117501
[7] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[8] Lange K K, Tellgren E I, Hoffmann M R and Helgaker T 2012 Science 337 327
[9] SaliliS M, Tamba M G, Sprunt S N, Welch C, Mehl G H, Jákli A, Gleeson J and T 2016 Phys. Rev. Lett. 116 217801
[10] Haravifard S, Graf D, Feiguin A E, Batista C D, Lang J C, Silevitch D M, Srajer G, Gaulin H, Dabkowska A and Rosenbaum T F 2016 Nat. Commun. 7 11956
[11] Lauterbur P C 1973 Nature 242 190
[12] Shou Q Y, Feng L, Long Y, Han J, Nunnery J K, Powell D H and Butcher R A 2016 Nat. Chem. Biol. 12 770
[13] Weijers H W, Markiewicz W D, Gavrilin A V, Voran A J, Viouchkov Y L, Gundlach S R, Noyes P D, Abraimov D V, Bai H, Hannahs S T and Murphy T P 2016 IEEE Trans. Appl. Supercond. 264 300807
[14] JilesD C 2015 Introduction to Magnetism and Magnetic Materials (London: CRC Press)
[15] Feynman R P 1964 The Feynman Lectures on Physics (Leighton, Robert B.; Sands Matthew)
[16] Zhang J, Liu S, Nshimiyimana J P, Deng Y, Hou G, Chi X, Hu X, Zhang Z, Wu P, Wang G, Chu W and Sun L 2017 Small 13 1701218
[17] Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Science 287 637
[18] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[19] Shi Z J, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y and Iijima S 1999 Solid State Commun. 112 35
[20] Choucair M, Tse N M K, Hill M R and Stride J A 2012 Surf. Sci. 606 34
[21] Zhu X Y, Lee S M, Lee Y H and Frauenheim T 2000 Phys. Rev. Lett. 85 2757
[22] Han K H, Spemann D, Esquinazi P, Hohne R, Riede V and Butz T 2003 Adv. Mater. 15 1719
[23] Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 Phys. Rev. Lett. 98 187204
[24] Cervenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840
[25] Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J and Chen Y 2009 Nano Lett. 9 220
[26] Zhou P and He D W 2016 Chin. Phys. B 25 017302
[27] GonzalezHerrero H, GómezRodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J V, Yndurain F and Brihuega I 2016 Science 352 437
[28] Wang G, Chen M, Yu F, Xue L, Deng Y, Zhang J, Qi X, Gao Y, Chu W, Liu G, Yang H, Gu C and Sun L 2015 Chin. Phys. B 24 016202
[29] Zhang Y, Li S Y, Huang H, Li W T, Qiao J B, Wang W X, Yin L J, Bai K K, Duan W and He L 2016 Phys. Rev. Lett. 117 166801
[30] Kim P, Odom T W, Huang J L and Lieber C M 1999 Phys. Rev. Lett. 82 1225
[31] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[32] Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F and Li Y 2014 Nature 510 522
[33] Wei Q, Wei Z, Ren L, Zhao H, Ye T, Shi Z, Fu Y, Zhang X and Huang R 2012 Chin. Phys. B 21 088103
[34] Zhang J, Deng Y, Hu X, Nshimiyimana J P, Liu S, Chi X, Wu P, Dong F, Chen P, Chu W and Sun L 2018 Adv. Sci. 5 1700588
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[6] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[7] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[8] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[9] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[10] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[11] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[12] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[13] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[14] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[15] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
No Suggested Reading articles found!