Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093101    DOI: 10.1088/1674-1056/ab3437

Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study

Camile Rodolphe Tchenguem Kamto1, Bridinette Thiodjio Sendja2, Jeannot Mane Mane2,3
1 University of Yaounde I, Faculty of Science, Department of Physics, Yaounde, Cameroon;
2 University of Yaounde I, National Advanced School of Engineering, Department of Mathematic and Physical Science, Yaounde, Cameroon;
3 University of Dschang, Dschang, Cameroon

The multi-walled carbon nanotubes (MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition (CCVD) process, and were thermally annealed by the hot filament plasma enhanced (HF PE) method at 550℃ for two hours. The x-ray absorption near edge structure (XANES) technique was used to investigate the adsorption and desorption phenomena of the MWCNTs at normal and grazing incidence angles. The adsorbates were found to have different sensitivities to the thermal annealing. The geometry of the incident beam consistently gave information about the adsorption and desorption phenomena. In addition, the adsorption of non-intrinsic potassium quantitatively affected the intrinsic adsorbates and contributed to increase the conductivity of the MWCNTs. The desorption of potassium was almost 70% greater after the thermal annealing. The potassium non-intrinsic adsorbates are from a physisorption mechanism whereas the intrinsic adsorbates result from chemisorption.

Keywords:  multi-walled carbon nanotubes      thermal annealing      adsorption      desorption  
Received:  15 May 2019      Revised:  12 July 2019      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding) (Electronic structure and bonding characteristics)  
  32.30.Rj (X-ray spectra)  
  82.80.Dx (Analytical methods involving electronic spectroscopy)  
Corresponding Authors:  Bridinette Thiodjio Sendja     E-mail:

Cite this article: 

Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study 2019 Chin. Phys. B 28 093101

[1] Iijima S 1991 Nature 354 56
[2] Dresselhaus M S, Dresselhaus G and Avouris P 2001 Carbon Nanotubes:Synthesis, Structure, Properties And Applications (Berlin:Springer) p. 29
[3] Cojocaru C S 2003(Ph. D Thesis) (Université Louis Pasteur, Strasbourg I)
[4] Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E and Smalley R E 1996 Science 273 483
[5] Lin K S, Mai Y J, Li S R, Shu C W and Wang C H 2012 J. Nanomater 939683
[6] Huang W, Wang Y, Luo G and Wie F 2003 Carbon 41 2585
[7] Eba Medjo R, Thiodjio Sendja B, Mane Mane J and Owono Ateba P 2009 Phys. Scr. 80 045601
[8] Cojocaru C S and Le Normand F 2006 Thin Solid Films 515 53
[9] Taschner C, Pacal F, Leonhardt A, Spatenka P, Bartsch K, Graff A and Kaltofen R 2003 Surf. Coat. Technol. 174-175 81
[10] Hatton R A, Blanchard N P, Miller A J and Silva S R P 2007 Physica E 37 124
[11] Varghese O K, Kichambre P D, Gong D, Ong K G, Dickey E C and Grimes G A 2001 Sens. Actuators B Chem. 81 32
[12] Zhu L, Chang D W, Dai L and Hong Y 2007 Nano Lett. 7 3592
[13] Ibach H 2006 Physics of Surfaces and Interfaces (Berlin:Springer-Verlag) p. 30
[14] Lennard-Jones J E 1932 Trans. Faraday Soc. 28 333
[15] Dabrowski A 2001 Adv. Colloid Interface Sci. 93 135
[16] Peigney A, Laurent C, Flahaut E, Bacsa R R and Rousset A 2001 Carbon 39 507
[17] Kuznetsova A, Popova I, Yates J T, Bronikowski M J, Huffman C B, Liu J, Smalley R E, Hwu H H and Chen J G 2001 J. Am. Chem. Soc. 123 10699
[18] Eba Medjo R, Thiodjio Sendja B and Mane Mane J 2014 Mater. Sci. Appl. 5 95
[19] Jun Z and Chang L 2005 Xanes Study of Carbon Based Nanotubes 29 Conference proceedings
[20] Eba Medjo R 2015 Contamination in Manufacturing of Carbon Nanostructures
[21] Rosenberg R A, Love P J and Rehn V 1986 Phys. Rev. B 33 4034
[22] Durgun E, Dag S, Bagci V M K, et al. 2003 Phys. Rev. B 67 201401(R)
[23] Ding Y, Yang X B and Ni J 2006 Front. Phys. Chin. 1 317
[24] Dresselhaus M S, Williams K A and Eklund P C 1999 MRS Bull. 24 45
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[5] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[6] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[7] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[8] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[9] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[10] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[11] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[12] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[13] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[14] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
[15] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
No Suggested Reading articles found!