Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044601    DOI: 10.1088/1674-1056/abcf36
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Instability of single-walled carbon nanotubes conveying Jeffrey fluid

Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军)
1 School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China
Abstract  We report instability of the single-walled carbon nanotubes (SWCNT) filled with non-Newtonian Jeffrey fluid. Our objective is to get the influences of relaxation time and retardation time of the Jeffrey fluid on the vibration frequency and the decaying rate of the amplitude of carbon nanotubes. An elastic Euler-Bernoulli beam model is used to describe vibrations and structural instability of the carbon nanotubes. A new vibration equation of an SWCNT conveying Jeffrey fluid is first derived by employing Euler-Bernoulli beam equation and Cauchy momentum equation taking constitutive relation of Jeffrey fluid into account. The complex vibrating frequencies of the SWCNT are computed by solving a cubic eigenvalue problem based upon differential quadrature method (DQM). It is interesting to find from computational results that retardation time has significant influences on the vibration frequency and the decaying rate of the amplitude. Especially, the vibration frequency decreases and critical velocity increases with the retardation time. That is to say, longer retardation time makes the SWCNT more stable.
Keywords:  single-walled carbon nanotubes      Jeffrey fluid      relaxation time      retardation time  
Received:  08 July 2020      Revised:  12 November 2020      Accepted manuscript online:  01 December 2020
PACS:  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.10.ad (Navier-Stokes equations)  
  46.70.De (Beams, plates, and shells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772162), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2019BS01004), and the Inner Mongolia Grassland Talent, China (Grant No. 12000-12102408).
Corresponding Authors:  Corresponding author. E-mail: jianyj@imu.edu.cn   

Cite this article: 

Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军) Instability of single-walled carbon nanotubes conveying Jeffrey fluid 2021 Chin. Phys. B 30 044601

1 Iijima S 1991 Nature 354 56
2 Hayat T, Ahmed B, Abbasi F M and Alsaedi A 2017 Colloid Polym. Sci. 295 1905
3 Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S and Heben M J 1997 Nature 386 377
4 He X W, Gao W L, Xie L J, Li B, Zhang Q, Lei S D, Robinson J M, Hàroz E H, Doorn S K, Wang W P, Vajtai R, Ajayan P M, Adams W W, Hauge R H and Kono J 2016 Nat. Nanotech. 11 633
5 Biesheuvel P M and Bazant M Z 2016 Phys. Rev. E 94 050601
6 Rafii-Tabar H 2004 Phys. Rep. 390 235
7 Evans E, Bowman H, Leung A, Needham D and Tirrel D 1996 Science 273 933
8 Cai D, Mataraza J M, Qin Z H, Huang Z P, Huang J Y, Chiles T C, Carnahan D, Kempa K and Ren Z F 2005 Nat. Methods 2 449
9 Che G, Lakshmi B B, Fisher E R and Martin C R 1998 Nature 393 346
10 Dequesnes M, Rotkin S V and Aluru N R 2002 Nanotechnology 13 120
11 Mao Z, Sinnot S B 2000 J. Phys. Chem. B 104 4618
12 Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
13 Yoon J, Ru C Q and Mioduchowski A 2005 Compos. Sci. Technol. 65 1326
14 Yoon J, Ru C Q and Mioduchowski A 2006 Int. J. Solids Struct. 43 3337
15 Gogotsi Y, Naguib N and Libera J A 2002 Chem. Phys. Lett. 365 354
16 Lee H L, Chang W J 2008 J. Appl. Phys. 103 024302
17 Wang B, Deng Z C, Ouyang H J and Xu X J 2015 Appl. Math. Model. 39 6780
18 Ghavanloo E, Daneshmand F, Radiei M 2010 Physica E 42 2218
19 Hosseini M, Sadeghi-goughari M, Atashipour S A and Eftekari M Arch. Mech. 66 217
20 Bahaadini R, Saidi A R and Hosseini M 2018 Acta Mech. 229 5013
21 Sadeghi-Goughari M, Jeon S and Kwon H J 2017 Phys. Lett. A 381 2898
22 Bahaadini R and Hosseini M 2016 Comp. Mater. Sci. 114 151
23 Khosravian N, Rafii-Tabar H 2007 J. Phys. D: Appl. Phys. 40 7046
24 Soltani P, Taherian M M and Farshidianfar A 2010 J. Phys. D: Appl. Phys. 43 425401
25 Bandopadhyay A and Chakraborty S 2012 Appl. Phys. Lett. 101 043905
26 Jian Y J, Li F Q, Liu Y B, Chang L, Liu Q S and Yang L G 2017 Colloids Surf. B Biointerfaces 156 405
27 Hao N and Jian Y J 2020 J. Phys. D: Appl. Phys. 53 11LT01
28 Bert C W and Malik M 1996 Appl. Mech. Rev. 49 1
29 Zhen Y X, Wen S L and Tang Y 2019 Physica E 105 116
30 Yang T, Tang Y and Lv X 2019 Compos. B. Eng. 156 319
31 Si D Q and Jian Y J 2015 J. Phys. D: Appl. Phys. 48 085501
32 Jian Y J, Liu Q S, Duan H Z, Chang L and Yang L G 2011 Phys. Fluids 1376 616
[1] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[2] Crossover of large to small radius polaron in ionic crystals
M I Umo. Chin. Phys. B, 2016, 25(11): 117104.
[3] High-energy pulse generation using Yb-doped Q-switched fiber laser based on single-walled carbon nanotubes
Wang Jun-Li (王军利), Wang Xue-Ling (汪雪玲), He Bo-Rong (贺博荣), Zhu Jiang-Feng (朱江峰), Wei Zhi-Yi (魏志义), Wang Yong-Gang (王勇刚). Chin. Phys. B, 2015, 24(9): 097601.
[4] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
[5] Effect of optical pumping on the momentum relaxation time of graphene in the terahertz range
Zuo Zhi-Gao (左志高), Wang Ping (王平), Ling Fu-Ri (凌福日), Liu Jin-Song (刘劲松), Yao Jian-Quan (姚建铨). Chin. Phys. B, 2013, 22(9): 097304.
[6] Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy
Wu Mu-Hong (吴慕鸿), Li Xiao (李晓), Pan Ding (潘鼎), Liu Lei (刘磊), Yang Xiao-Xia (杨晓霞), Xu Zhi (许智), Wang Wen-Long (王文龙), Sui Yu (隋郁), Bai Xue-Dong (白雪冬). Chin. Phys. B, 2013, 22(8): 086101.
[7] Multi-relaxation time lattice Boltzmann simulation of inertial secondary flow in a curved microchannel
Sun Dong-Ke (孙东科), Xiang Nan (项楠), Jiang Di (姜迪), Chen Ke (陈科), Yi Hong (易红), Ni Zhong-Hua (倪中华). Chin. Phys. B, 2013, 22(11): 114704.
[8] Response of thermal source in a transversely isotropic thermoelastic half-space with mass diffusion by finite element method
Ibrahim A. Abbas, Rajneesh Kumar, Vijay Chawla. Chin. Phys. B, 2012, 21(8): 084601.
[9] Transient transport processes in deformable porous media
Cs. Mėszàros and 'A. Bàlint . Chin. Phys. B, 2011, 20(11): 110507.
[10] Electron field emission from single-walled carbon nanotube nonwoven
Song Li (宋礼), Liu Shuang (刘双), Zhang Geng-Min (张耿民), Liu Li-Feng (刘利峰), Ma Wen-Jun (马文君), Liu Dong-Fang (刘东方), Zhao Xiao-Wei (赵小伟), Luo Shu-Dong (罗述东), Zhang Zeng-Xing (张增星), Xiang Yan-Juan (向彦娟), Shen Jun (沈俊), Zhou Jian-Jun (周建军), Wang Gang (王刚), Zhou Wei-Ya (周维亚). Chin. Phys. B, 2006, 15(2): 422-427.
[11] Effects of cross-correlated noises on the relaxation time of the bistable system
Xie Chong-Wei (谢崇伟), Mei Dong-Cheng (梅冬成). Chin. Phys. B, 2003, 12(11): 1208-1212.
[12] DIRECT MEASUREMENT OF TRANSVERSE RELAXATION TIME OF INTERMOLECULAR MULTIPLE QUANTUM COHERENCES IN NMR
Zheng Shao-kuan (郑绍宽), Chen Zhong (陈忠), Chen Zhi-wei (陈志伟), Zhong Jian-hui (钟健晖). Chin. Phys. B, 2001, 10(6): 558-563.
No Suggested Reading articles found!