Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037501    DOI: 10.1088/1674-1056/23/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity

Gu Yan-Hong (谷艳红)a, Liu Yong (刘雍)a, Yao Chao (姚超)b, Ma Yan-Wei (马衍伟)b, Wang Yu (王雨)c, Chan Helen Lai-Wah (陈王丽华)c, Chen Wan-Ping (陈万平)a
a Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
b Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
c Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Abstract  Bi0.9Ho0.1Fe0.95O3 and Bi0.9Ho0.1Fe0.9Ti0.05O3 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bi0.9Ho0.1Fe0.9Ti0.05O3 ceramics were much smaller than those of Bi0.9Ho0.1Fe0.95O3. An electrical resistivity of more than 1×1014 Ω·cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of ~0.485 emu/g were obtained for Bi0.9Ho0.1Fe0.9Ti0.05O3; both were much higher than those of Bi0.9Ho0.1Fe0.95O3. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and (Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.
Keywords:  BiFeO3      multiferroics      magnetism      resistivity  
Received:  02 August 2013      Revised:  22 September 2013      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB939705) and the National Natural Science Foundation of China (Grant No. J1210061).
Corresponding Authors:  Chen Wan-Ping     E-mail:  wpchen@whu.edu.cn

Cite this article: 

Gu Yan-Hong (谷艳红), Liu Yong (刘雍), Yao Chao (姚超), Ma Yan-Wei (马衍伟), Wang Yu (王雨), Chan Helen Lai-Wah (陈王丽华), Chen Wan-Ping (陈万平) Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity 2014 Chin. Phys. B 23 037501

[1] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[2] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[3] Eerenstein W, Morrison F D, Dho J, Blamire M G, Scott J F and Mathur N D 2005 Science 307 1203a
[4] Dho J, Qi X D, Kim H, MacManus-Driscoll J L and Blamire M G 2006 Adv. Mater. 18 1445
[5] Ruette B, Zvyagin S, Pyatakov A P, Bush A, Li J F, Belotelov V I, Zvezdin A K and Vieland D 2004 Phys. Rev. B 69 064114
[6] Bai F, Wang J, Wuttig M, Li J F, Wang N, Pyatakov A P, Zvezdin A K, Cross L E and Vieland D 2005 Appl. Phys. Lett. 86 032511
[7] Mathe V L, Patankar K K, Patil R N and Lokhande C D 2004 J. Magn. Magn. Mater. 270 380
[8] Yuan G L, Or S W, Liu J M and Liu Z G 2006 Appl. Phys. Lett. 89 052905
[9] Yang Y, Liu Y L, Zhu K, Zhang L Y, Ma S Y and Liu J and Jiang Y J 2010 Chin. Phys. B 19 037802
[10] Ma Z Z, Li J Q, Tian Z M, Qiu Y and Yuan S L 2012 Chin. Phys. B 21 107503
[11] Wu Y J, Zhang J, Chen X K and Chen X J 2011 Solid State Commun. 151 1936
[12] Pradhan S K, Roul B K and Sahu D R 2012 Solid State Commun. 152 1176
[13] Qi X D, Dho J, Tomov R, Blamire M G and MacManus-Driscoll J L 2005 Appl. Phys. Lett. 86 062903
[14] Wang Y and Nan C W 2006 Appl. Phys. Lett. 89 052903
[15] Kumar M and Yadav K L 2006 J. Appl. Phys. 100 074111
[16] Gu Y H, Wang Y, Chen F, Chan H L W and Chen W P 2010 J. Appl. Phys. 108 094112
[17] Zhu W M, Su L W, Ye Z G and Ren W 2009 Appl. Phys. Lett. 94 142908
[18] Cui Y F, Zhao Y G, Luo L B, Yang J J, Chang H, Zhu M H, Xie D and Ren T L 2010 Appl. Phys. Lett. 97 222904
[19] Zhang S X, Luo W J, Wang L, Wang D L and Ma Y W 2010 J. Appl. Phys. 107 054110
[20] Jeon N, Rout D, Kim I W and Kang S J L 2011 Appl. Phys. Lett. 98 072901
[21] Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M and Liu Z G 2004 Appl. Phys. Lett. 84 1731
[22] Shen Z J, Chen W P, Yuan G L, Liu J M, Wang Y and Chan H L W 2007 Mater. Lett. 61 4354
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[6] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[7] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[8] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[11] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[12] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[13] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[14] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[15] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
No Suggested Reading articles found!