Computational studies on magnetism and ferroelectricity
Ke Xu(徐可)1, Junsheng Feng(冯俊生)2, and Hongjun Xiang(向红军)3,†
1 Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; 2 School of Physics and Material Engineering, Hefei Normal University, Hefei 230601, China; 3 Key Laboratory of Computational Physical Sciences(Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
Abstract Magnetics, ferroelectrics, and multiferroics have attracted great attentions because they are not only extremely important for investigating fundamental physics, but also have important applications in information technology. Here, recent computational studies on magnetism and ferroelectricity are reviewed. We first give a brief introduction to magnets, ferroelectrics, and multiferroics. Then, theoretical models and corresponding computational methods for investigating these materials are presented. In particular, a new method for computing the linear magnetoelectric coupling tensor without applying an external field in the first principle calculations is proposed for the first time. The functionalities of our home-made Property Analysis and Simulation Package for materials (PASP) and its applications in the field of magnetism and ferroelectricity are discussed. Finally, we summarize this review and give a perspective on possible directions of future computational studies on magnetism and ferroelectricity.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11825403, 12188101, and 11804138), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA10), and the Opening Foundation of the State Key Laboratory of Surface Physics of Fudan University (Grant No. KF2019 07). We thank Dr. Zhang H M for useful discussions.
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军) Computational studies on magnetism and ferroelectricity 2022 Chin. Phys. B 31 097505
[1] Li X Y, Yu H Y, Lou F, Feng J S, Whangbo M H and Xiang H J 2021 Molecules26 803 [2] Binder K and Young A P 1986 Rev. Mod. Phys.58 801 [3] Castelnovo C, Moessner R and Sondhi S L 2008 Nature451 42 [4] Yan S, Huse D A and White S R 2011 Science332 1173 [5] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature492 406 [6] Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boeni P 2009 Science323 915 [7] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boeni P 2009 Phys. Rev. Lett.102 186602 [8] Fujishiro Y, Kanazawa N and Tokura Y 2020 Appl. Phys. Lett.116 090501 [9] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature546 265 [10] Huang B, Clark G, Navarro-Moratalla E, R. Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature547 270 [11] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X D 2018 Science360 1214 [12] Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2018 Nat. Phys.14 277 [13] Cardoso C, Soriano D, García-Martínez N A and Fernández-Rossier J 2018 Phys. Rev. Lett.121 067701 [14] Jiang S, Shan J and Mak K F 2018 Nat. Mater.17 406 [15] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature563 94 [16] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol.13 289 [17] O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y Q K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano. Lett.18 3125 [18] Zheng S, Huang C X, Yu T, Xu M L, Zhang S T, Xu H Y, Liu Y C, Kan E J, Wang Y C and Guochun Yang G C 2019 J. Phys. Chem. Lett.10 2733 [19] Tian S J, Zhang J F, Li C H, Ying T P, Li S Y, Zhang X, Liu K and Lei H C 2019 J. Am. Chem. Soc.141 5326 [20] Su X Y, Qin H L, Yan Z B, Zhong D Y and Guo D H 2020 Chin. Phys. B31 037301 [21] Wu M H 2021 Acs Nano15 9229 [22] Gao W X, Zhu Y, Wang Y J, Yuan G L and Liu J M 2020 J. Materiomics6 1 [23] Xu W J, Romanyuk K, Martinho J M G, Zeng Y, Zhang X W, Ushakov A, Vladimir Shur V, Zhang W X, Chen X M, Kholkin A and Rocha J 2020 J. Am. Chem. Soc.142 16990 [24] Li P F, Liao Q, Tang Y, Qiao W C, Zhao D W, Yong Ai Y, Yao Y F and Xiong R G 2019 Proc. Natl. Acad. Sci. USA116 5878 [25] Lavrentovich O D 2020 Proc. Natl. Acad. Sci. USA117 14629 [26] Prateek, Thakur V K and Gupta R K 2016 Chem. Rev.116 4260 [27] Yang Q, Wu M H and Li J 2018 J. Phys. Chem. Lett.9 7160 [28] Xiong F, Zhang X, Lin Z and Chen Y 2018 J. Materiomics4 139 [29] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y and Kalinin S V 2015 Nano Lett.15 3808 [30] You L, Liu F C, Li H S, Hu Y Z, Zhou S, Chang L, Zhou Y, Fu Q D, Yuan G L, Dong S, Fan H J, Gruverman A, Liu Z and Wang J L 2018 Adv. Mater.30 1803249 [31] Collins J L, Wang C, Tadich A, Yin Y, Zheng C, Hellerstedt J, Grubišić-Čabo A, Tang S, Mo S, Riley J, Huwald E, Medhekar N V, Fuhrer M S and Edmonds M T 2020 ACS Appl. Electron. Mater.2 213 [32] Yasuda K, Wang X R, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Science372 1458 [33] Fiebig M, Lottermoser T, Meier D and Trassin M 2016 Nat. Rev. Mater.1 16046 [34] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science299 1719 [35] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature426 55 [36] Khomskii D 2009 Physics2 20 [37] Wang H and Qian X F 2017 2D Mater.4 015042 [38] Shen W, Pan Y H, Shen S N, Li H, Nie S Y and Mei J 2021 Chin. Phys. B30 117503 [39] Huang C X, Du Y P, Wu H P, Xiang H J, Deng K M and Kan E J 2018 Phys. Rev. Lett.120 147601 [40] Luo W, Xu K and Xiang H J 2017 Phys. Rev. B96 235415 [41] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature602 601 [42] Bayaraa T, Xu C S, Yang Y L, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett.125 067602 [43] Amoroso D, Barone P and Silvia Picozzi 2020 Nat. Commun.11 5784 [44] Nahas Y, Prokhorenko S, Kornev I and Bellaiche L 2017 Phys. Rev. Lett.119 117601 [45] Xu C S, Nahas Y, Prokhorenko S, Xiang H J and Bellaiche L 2020 Phys. Rev. B101 241402(R) [46] Fujiyama S and Kato R 2019 Phys. Rev. Lett.122 147204 [47] Leiner J C, Jeschke H O, Valentí R, Zhang S, Savici A T, Lin J Y Y, Stone M B, Lumsden M D, Hong J W, Delaire O, Bao W and Broholm C L 2019 Phys. Rev. X9 011035 [48] Wu X F, Li J Y, Ma X M, et al. 2020 Phys. Rev. X10 031013 [49] Xu B, Dupé B, Xu C S, Xiang H J and Bellaiche L 2018 Phys. Rev. B98 184420 [50] Liu K, Lu J L, Picozzi S, Bellaiche L and Xiang H J 2018 Phys. Rev. Lett.121 027601 [51] Gu T, Scarbrough T, Yang Y R, Íñiguez J, Bellaiche L and Xiang H J 2018 Phys. Rev. Lett.120 197602 [52] Wang D W, Liu L J, Liu J, Zhang N and Wei X Y 2018 Chin. Phys. B27 127702 [53] Xu C S, Feng J S, Xiang H J and Bellaiche L 2018 npj Comput. Mater.4 57 [54] Xiang H J, Kan E J, Zhang Y, Whangbo M H and Gong X G 2011 Phys. Rev. Lett.107 157202 [55] Moriya T 1960 Phys. Rev.120 91 [56] Hoffmann M and Blügel S 2020 Phys. Rev. B101 024418 [57] Xiang H J, Kan E J, Wei S H, Whangbo M H and Gong X G 2011 Phys. Rev. B84 224429 [58] Xiang H J, Lee C H, Koo H J, Gong X G and Whangbo M H 2013 Dalton Trans.42 823 [59] Kitaev A 2006 Ann. Phys.321 2 [60] Banerjee A, Yan J Q, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science356 1055 [61] Takagi H, Takayama T, Jackeli G, Khaliullin G and Nagler S E 2019 Nat. Rev. Phys.1 264 [62] Stavropoulos P P, Pereira D and Kee H Y 2019 Phys. Rev. Lett.123 037203 [63] Xu C S, Junsheng Feng J S, Kawamura M, Yamaji Y, Nahas Y, Prokhorenko S, Qi Y, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett.124 087205 [64] Kartsev A, Augustin M, Evans R F L, Novoselov K S and Santos E J G 2020 npj Comput. Mater.6 150 [65] Slonczewski J C 1991 Phys. Rev. Lett.67 3172 [66] Lorenz B, Wang Y Q and Chu C W 2007 Phys. Rev. B76 104405 [67] Fedorova N S, Bortis A, Findler C and Spaldin N A 2018 Phys. Rev. B98 235113 [68] Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S and Xiang H J 2021 Phys. Rev. Lett.127 247204 [69] Xu C S, Li X Y, Chen P, Zhang Y, Xiang H J and Bellaiche L 2022 Adv. Mater.34 2107779 [70] Paul S, Haldar S, von Malottki S and Heinze S 2020 Nat. Commun.11 4756 [71] Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B52 6301 [72] Íñiguez J and Vanderbilt D 2002 Phys. Rev. Lett.89 115503 [73] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett.95 057205 [74] Xiang H J, Wang P S, Whangbo M H and Gong X G 2013 Phys. Rev. B88 054404 [75] Lu X Z, Wu X F and Xiang H J 2015 Phys. Rev. B91 100405 [76] Wang P S, Lu X Z, Gong X G and Xiang H J 2016 Comput. Mater. Sci.112 448 [77] Feng J S and Xiang H J 2016 Phys. Rev. B93 174416 [78] Wu X, Vanderbilt D and Hamann D R 2005 Phys. Rev. B72 035105 [79] Swartz C W and Wu X 2012 Phys. Rev. B85 054102 [80] Li J, Feng J S, Wang P S, Kan E J and Xiang H J 2021 Sci. China Phys. Mech.64 286811 [81] He G M, Zhang H M, Ni J Y, Liu B Y, Xu C S and Xiang H J 2022 Chin. Phys. Lett.39 067501 [82] Fiebig M 2005 J. Phys. D:Appl. Phys.38 R123 [83] Bousquet E, Spaldin N A and Delaney K T 2011 Phys. Rev. Lett.106 107202 [84] Ricci F and Bousquet E 2016 Phys. Rev. Lett.116 227601 [85] Garcia-Castro A C, Romero A H and Bousquet E 2016 Phys. Rev. Lett.116 117202 [86] Xu K, Liang G J, Feng Y, Xiang H J and Feng J S 2020 Phys. Rev. B102 224416 [87] Dasa T R, Hao L, Liu J and Xu H X 2019 J. Mater. Chem. C7 13294 [88] Pi M C, Xu X F, He M Q and Chai Y S 2022 Phys. Rev. B105 L020407 [89] Li X Y, Lou F, Gong X G and Xiang H J 2020 New J. Phys.22 053036 [90] Lou F, Li X Y, Ji J Y, Yu H Y, Feng J S, Gong X G and Xiang H J 2021 J. Chem. Phys.154 114103 [91] Liu P, Kim B C, Friesner R A and Berne B J 2005 Proc. Natl. Acad. Sci. USA102 13749 [92] Earlab D J and Deem M W 2005 Phys. Chem. Chem. Phys.7 3910 [93] Wales D J and Doye J P K 1997 J. Phys. Chem. A101 5111 [94] Lou F, Luo W, Feng J S and H. Xiang H J 2019 Phys. Rev. B99 205104 [95] Hukushima K and Nemoto K 1996 J. Phys. Soc. Jpn.65 1604 [96] Hansmann U H E 1997 Chem. Phys. Lett.281 140
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.