Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097505    DOI: 10.1088/1674-1056/ac7b1b
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Computational studies on magnetism and ferroelectricity

Ke Xu(徐可)1, Junsheng Feng(冯俊生)2, and Hongjun Xiang(向红军)3,†
1 Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
2 School of Physics and Material Engineering, Hefei Normal University, Hefei 230601, China;
3 Key Laboratory of Computational Physical Sciences(Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
Abstract  Magnetics, ferroelectrics, and multiferroics have attracted great attentions because they are not only extremely important for investigating fundamental physics, but also have important applications in information technology. Here, recent computational studies on magnetism and ferroelectricity are reviewed. We first give a brief introduction to magnets, ferroelectrics, and multiferroics. Then, theoretical models and corresponding computational methods for investigating these materials are presented. In particular, a new method for computing the linear magnetoelectric coupling tensor without applying an external field in the first principle calculations is proposed for the first time. The functionalities of our home-made Property Analysis and Simulation Package for materials (PASP) and its applications in the field of magnetism and ferroelectricity are discussed. Finally, we summarize this review and give a perspective on possible directions of future computational studies on magnetism and ferroelectricity.
Keywords:  magnets      ferroelectrics      multiferroics      Monte Carlo simulation      four-state method      DFT calculation      Property Analysis and Simulation Package for materials (PASP) software  
Received:  22 April 2022      Revised:  17 June 2022      Accepted manuscript online:  22 June 2022
PACS:  75.10.-b (General theory and models of magnetic ordering)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11825403, 12188101, and 11804138), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA10), and the Opening Foundation of the State Key Laboratory of Surface Physics of Fudan University (Grant No. KF2019 07). We thank Dr. Zhang H M for useful discussions.
Corresponding Authors:  Hongjun Xiang     E-mail:  hxiang@fudan.edu.cn

Cite this article: 

Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军) Computational studies on magnetism and ferroelectricity 2022 Chin. Phys. B 31 097505

[1] Li X Y, Yu H Y, Lou F, Feng J S, Whangbo M H and Xiang H J 2021 Molecules 26 803
[2] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[3] Castelnovo C, Moessner R and Sondhi S L 2008 Nature 451 42
[4] Yan S, Huse D A and White S R 2011 Science 332 1173
[5] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[6] Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boeni P 2009 Science 323 915
[7] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boeni P 2009 Phys. Rev. Lett. 102 186602
[8] Fujishiro Y, Kanazawa N and Tokura Y 2020 Appl. Phys. Lett. 116 090501
[9] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[10] Huang B, Clark G, Navarro-Moratalla E, R. Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 547 270
[11] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X D 2018 Science 360 1214
[12] Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2018 Nat. Phys. 14 277
[13] Cardoso C, Soriano D, García-Martínez N A and Fernández-Rossier J 2018 Phys. Rev. Lett. 121 067701
[14] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406
[15] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
[16] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[17] O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y Q K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano. Lett. 18 3125
[18] Zheng S, Huang C X, Yu T, Xu M L, Zhang S T, Xu H Y, Liu Y C, Kan E J, Wang Y C and Guochun Yang G C 2019 J. Phys. Chem. Lett. 10 2733
[19] Tian S J, Zhang J F, Li C H, Ying T P, Li S Y, Zhang X, Liu K and Lei H C 2019 J. Am. Chem. Soc. 141 5326
[20] Su X Y, Qin H L, Yan Z B, Zhong D Y and Guo D H 2020 Chin. Phys. B 31 037301
[21] Wu M H 2021 Acs Nano 15 9229
[22] Gao W X, Zhu Y, Wang Y J, Yuan G L and Liu J M 2020 J. Materiomics 6 1
[23] Xu W J, Romanyuk K, Martinho J M G, Zeng Y, Zhang X W, Ushakov A, Vladimir Shur V, Zhang W X, Chen X M, Kholkin A and Rocha J 2020 J. Am. Chem. Soc. 142 16990
[24] Li P F, Liao Q, Tang Y, Qiao W C, Zhao D W, Yong Ai Y, Yao Y F and Xiong R G 2019 Proc. Natl. Acad. Sci. USA 116 5878
[25] Lavrentovich O D 2020 Proc. Natl. Acad. Sci. USA 117 14629
[26] Prateek, Thakur V K and Gupta R K 2016 Chem. Rev. 116 4260
[27] Yang Q, Wu M H and Li J 2018 J. Phys. Chem. Lett. 9 7160
[28] Xiong F, Zhang X, Lin Z and Chen Y 2018 J. Materiomics 4 139
[29] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y and Kalinin S V 2015 Nano Lett. 15 3808
[30] You L, Liu F C, Li H S, Hu Y Z, Zhou S, Chang L, Zhou Y, Fu Q D, Yuan G L, Dong S, Fan H J, Gruverman A, Liu Z and Wang J L 2018 Adv. Mater. 30 1803249
[31] Collins J L, Wang C, Tadich A, Yin Y, Zheng C, Hellerstedt J, Grubišić-Čabo A, Tang S, Mo S, Riley J, Huwald E, Medhekar N V, Fuhrer M S and Edmonds M T 2020 ACS Appl. Electron. Mater. 2 213
[32] Yasuda K, Wang X R, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Science 372 1458
[33] Fiebig M, Lottermoser T, Meier D and Trassin M 2016 Nat. Rev. Mater. 1 16046
[34] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[35] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[36] Khomskii D 2009 Physics 2 20
[37] Wang H and Qian X F 2017 2D Mater. 4 015042
[38] Shen W, Pan Y H, Shen S N, Li H, Nie S Y and Mei J 2021 Chin. Phys. B 30 117503
[39] Huang C X, Du Y P, Wu H P, Xiang H J, Deng K M and Kan E J 2018 Phys. Rev. Lett. 120 147601
[40] Luo W, Xu K and Xiang H J 2017 Phys. Rev. B 96 235415
[41] Song Q, Occhialini C A, Ergeçen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N and Comin R 2022 Nature 602 601
[42] Bayaraa T, Xu C S, Yang Y L, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett. 125 067602
[43] Amoroso D, Barone P and Silvia Picozzi 2020 Nat. Commun. 11 5784
[44] Nahas Y, Prokhorenko S, Kornev I and Bellaiche L 2017 Phys. Rev. Lett. 119 117601
[45] Xu C S, Nahas Y, Prokhorenko S, Xiang H J and Bellaiche L 2020 Phys. Rev. B 101 241402(R)
[46] Fujiyama S and Kato R 2019 Phys. Rev. Lett. 122 147204
[47] Leiner J C, Jeschke H O, Valentí R, Zhang S, Savici A T, Lin J Y Y, Stone M B, Lumsden M D, Hong J W, Delaire O, Bao W and Broholm C L 2019 Phys. Rev. X 9 011035
[48] Wu X F, Li J Y, Ma X M, et al. 2020 Phys. Rev. X 10 031013
[49] Xu B, Dupé B, Xu C S, Xiang H J and Bellaiche L 2018 Phys. Rev. B 98 184420
[50] Liu K, Lu J L, Picozzi S, Bellaiche L and Xiang H J 2018 Phys. Rev. Lett. 121 027601
[51] Gu T, Scarbrough T, Yang Y R, Íñiguez J, Bellaiche L and Xiang H J 2018 Phys. Rev. Lett. 120 197602
[52] Wang D W, Liu L J, Liu J, Zhang N and Wei X Y 2018 Chin. Phys. B 27 127702
[53] Xu C S, Feng J S, Xiang H J and Bellaiche L 2018 npj Comput. Mater. 4 57
[54] Xiang H J, Kan E J, Zhang Y, Whangbo M H and Gong X G 2011 Phys. Rev. Lett. 107 157202
[55] Moriya T 1960 Phys. Rev. 120 91
[56] Hoffmann M and Blügel S 2020 Phys. Rev. B 101 024418
[57] Xiang H J, Kan E J, Wei S H, Whangbo M H and Gong X G 2011 Phys. Rev. B 84 224429
[58] Xiang H J, Lee C H, Koo H J, Gong X G and Whangbo M H 2013 Dalton Trans. 42 823
[59] Kitaev A 2006 Ann. Phys. 321 2
[60] Banerjee A, Yan J Q, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science 356 1055
[61] Takagi H, Takayama T, Jackeli G, Khaliullin G and Nagler S E 2019 Nat. Rev. Phys. 1 264
[62] Stavropoulos P P, Pereira D and Kee H Y 2019 Phys. Rev. Lett. 123 037203
[63] Xu C S, Junsheng Feng J S, Kawamura M, Yamaji Y, Nahas Y, Prokhorenko S, Qi Y, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett. 124 087205
[64] Kartsev A, Augustin M, Evans R F L, Novoselov K S and Santos E J G 2020 npj Comput. Mater. 6 150
[65] Slonczewski J C 1991 Phys. Rev. Lett. 67 3172
[66] Lorenz B, Wang Y Q and Chu C W 2007 Phys. Rev. B 76 104405
[67] Fedorova N S, Bortis A, Findler C and Spaldin N A 2018 Phys. Rev. B 98 235113
[68] Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S and Xiang H J 2021 Phys. Rev. Lett. 127 247204
[69] Xu C S, Li X Y, Chen P, Zhang Y, Xiang H J and Bellaiche L 2022 Adv. Mater. 34 2107779
[70] Paul S, Haldar S, von Malottki S and Heinze S 2020 Nat. Commun. 11 4756
[71] Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B 52 6301
[72] Íñiguez J and Vanderbilt D 2002 Phys. Rev. Lett. 89 115503
[73] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[74] Xiang H J, Wang P S, Whangbo M H and Gong X G 2013 Phys. Rev. B 88 054404
[75] Lu X Z, Wu X F and Xiang H J 2015 Phys. Rev. B 91 100405
[76] Wang P S, Lu X Z, Gong X G and Xiang H J 2016 Comput. Mater. Sci. 112 448
[77] Feng J S and Xiang H J 2016 Phys. Rev. B 93 174416
[78] Wu X, Vanderbilt D and Hamann D R 2005 Phys. Rev. B 72 035105
[79] Swartz C W and Wu X 2012 Phys. Rev. B 85 054102
[80] Li J, Feng J S, Wang P S, Kan E J and Xiang H J 2021 Sci. China Phys. Mech. 64 286811
[81] He G M, Zhang H M, Ni J Y, Liu B Y, Xu C S and Xiang H J 2022 Chin. Phys. Lett. 39 067501
[82] Fiebig M 2005 J. Phys. D:Appl. Phys. 38 R123
[83] Bousquet E, Spaldin N A and Delaney K T 2011 Phys. Rev. Lett. 106 107202
[84] Ricci F and Bousquet E 2016 Phys. Rev. Lett. 116 227601
[85] Garcia-Castro A C, Romero A H and Bousquet E 2016 Phys. Rev. Lett. 116 117202
[86] Xu K, Liang G J, Feng Y, Xiang H J and Feng J S 2020 Phys. Rev. B 102 224416
[87] Dasa T R, Hao L, Liu J and Xu H X 2019 J. Mater. Chem. C 7 13294
[88] Pi M C, Xu X F, He M Q and Chai Y S 2022 Phys. Rev. B 105 L020407
[89] Li X Y, Lou F, Gong X G and Xiang H J 2020 New J. Phys. 22 053036
[90] Lou F, Li X Y, Ji J Y, Yu H Y, Feng J S, Gong X G and Xiang H J 2021 J. Chem. Phys. 154 114103
[91] Liu P, Kim B C, Friesner R A and Berne B J 2005 Proc. Natl. Acad. Sci. USA 102 13749
[92] Earlab D J and Deem M W 2005 Phys. Chem. Chem. Phys. 7 3910
[93] Wales D J and Doye J P K 1997 J. Phys. Chem. A 101 5111
[94] Lou F, Luo W, Feng J S and H. Xiang H J 2019 Phys. Rev. B 99 205104
[95] Hukushima K and Nemoto K 1996 J. Phys. Soc. Jpn. 65 1604
[96] Hansmann U H E 1997 Chem. Phys. Lett. 281 140
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[7] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[8] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[9] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[10] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[11] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[12] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[13] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[14] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[15] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
No Suggested Reading articles found!