Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077504    DOI: 10.1088/1674-1056/abf7a9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2

Qi-Qi Yang(杨棋棋)1,2, Zhuang Liu(刘壮)1,†, Chao-Yue Zhang(张超越)1, Hai-Chen Wu(吴海辰)1, Xiao-Lei Gao(高晓磊)1, Yi-Long Ma(马毅龙)2,‡, Ren-Jie Chen(陈仁杰)1, and A-Ru Yan(闫阿儒)1
1 Laboratory of Rare-Earth Magnetic Functional Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2 College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
Abstract  In order to counteract the demagnetization caused by eddy current loss, widespread attention has been devoted to increasing the resistivity of permanent magnets. We prepared 2:17-type SmCo magnets doped with different ZrO2 contents and investigated the influence of the ZrO2 content on the magnetic properties and resistive anisotropism. The results showed that not only was the resistivity of the magnet improved, but, in addition, the coercivity of the magnet was significantly increased. The microstructure was studied with TEM, which showed that ZrO2 doping was able to cause a decrease in the lamellar phase density and the growth of cellular structures. The increased grain boundaries and Sm2O3 phases were favorable to the improvement of resistivity. The decrease of the lamellar phases caused a narrowing of the resistive anisotropism. The additional Cu in the center of the cellular boundaries was the main reason for the enhancement of Hcj. However, an excessive amount caused an increase of the Zr6(FeCo)23 phase and a deterioration of the cellular structure, thereby leading to a decrease in coercivity.
Keywords:  2:17-type SmCo magnets      resistivity      coercivity      cellular structure  
Received:  16 March 2021      Revised:  09 April 2021      Accepted manuscript online:  14 April 2021
PACS:  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51877094) and Ningbo Science and Technology Project (Grant No. 2014B11009).
Corresponding Authors:  Zhuang Liu, Yi-Long Ma     E-mail:  zliu@nimte.ac.cn;yilongma@163.com

Cite this article: 

Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒) Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2 2021 Chin. Phys. B 30 077504

[1] Zhou X L, Song X, Jia W T, Xiao A D, Yuan T and Ma T Y 2020 Scripta Mater. 182 1
[2] Zhang C Y, Liu Z, Wang G Q, Yan G H, Chen R J, Lee D and Yan A R 2019 J. Alloy. Compd. 795 513
[3] Sarlioglu B, Morris C T, Han D and Li S L 2017 IEEE Ind. Appl. Mag. 23 14
[4] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A R, Schäfer R, Gemming T and Schultz L 2006 Acta Mater. 54 997
[5] Chang Y, Li W, Yu X J, Zhu M G and Pan W 2008 J. Funct. Mater. 6 899–904
[6] Sami R, Minna H, Eelis T, Timo S N and Martti P 2009 IEEE t. magn. 46 15
[7] Katia C, Marion W, Elisabeth D G, Elie L and Johan M 2013 ECS Trans. 45 14
[8] Zhang G P, Li M L, Wu X M, Li C H and Luo X M 2014 Chin. J. Mater. Res. 28 81
[9] Pan W, Li W, Cui L Y, Li X M and Guo Z H 1999 IEEE T. Magn. 35 3343
[10] Yi J H 2014 Rare Metals. 33 633
[11] Chinnasamy C, Jasinski M M, Patches D and Liu J F 2012 IEEE T. Magn. 48 3166
[12] Duszová A, Dusza J, Tomášek K, Blugan G and Kuebler J 2008 J. Eur. Ceram. Sos. 28 1023
[13] Ouyang J, Jin J, Li X Y, Zhou Z and Yang H M 2014 Mater. China. 33 497
[14] Qadri S B, Kim H, Khan H R, Piqué A, Horwitz J S, Chrisey D, Kim W J and Skelton E F 2000 Thin Solid Films. 377-378 750
[15] Zhao W, Liu Y, Li J and Shi Q 2019 Intermetallics 114 106606
[16] Wang G Q, Liu Z, Zhang C Y, Yang Q Q, Wu H C, Chen R J and Yan A R 2020 J. Alloy. Compd. 849 156589
[17] Ahmadi M H and Paydar M H 2017 Int. J. Appl. Ceram. Tec. 14 1183
[18] Gopalan R, Muraleedharan K, Sastry T K, Singh A K, Joshi V, Rao D S and Chandrasekaran V J 2001 Mater. Sci. 36 4117
[19] Li T Y, Liu Z, Feng Y P, Liu L, Zhang C Y, Yan G H, Feng Z X, Lee D and Yan A R 2018 J. Alloy. Compd. 753 162
[20] Wu H C, Zhang C Y, Liu Z, Wang G Q, Lu H M, Chen G X, Li Y, Chen R J and Yan A R 2020 Acta Mater. 200 883
[21] Yan G H, Liu Z, Xia W X, Zhang C Y, Wang G Q, Chen R J, Lee D, Liu J P and Yan A R 2019 J. Alloy. Compd. 785 429
[22] Wang Y Q, Yue M, Wu D, Zhang D T, Liu W Q and Zhang H G 2018 Scripta Mater. 146 231
[23] Kronmüller H and Goll D 2002 Physica B 319 122
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[4] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[5] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[6] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[7] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[8] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[9] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[10] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[11] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[12] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[13] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[14] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[15] Different behavior of upper critical field in Fe1-xSe single crystals
Shunli Ni(倪顺利), Wei Hu(胡卫), Peipei Shen(沈沛沛), Zhongxu Wei(魏忠旭), Shaobo Liu(刘少博), Dong Li(李栋), Jie Yuan(袁洁), Li Yu(俞理), Kui Jin(金魁), Fang Zhou(周放), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2019, 28(12): 127401.
No Suggested Reading articles found!