Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 023302    DOI: 10.1088/1674-1056/23/2/023302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

High-pressure-activated carbon tetrachloride decomposition

Chen Yuan-Zheng (陈元正)a b, Zhou Mi (周密)a b, Sun Mei-Jiao (孙美娇)a, Li Zuo-Wei (里佐威)a, Sun Cheng-Lin (孙成林)a
a College of Physics, Jilin University, Changchun 130012, China;
b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  The pressure-induced molecular dissociation as one of the fundamental problems in physical sciences has aroused many theoretical and experimental studies. Here, using a newly developed particle swarm optimization algorithm, we investigate the high-pressure-induced molecular dissociation. The results show that the carbon tetrachloride (CCl4) is unstable and dissociates into C2Cl6 and Cl2 under approximately 120 GPa and more. The dissociation is confirmed by the lattice dynamic calculations and electronic structure of the Pa3 structure with pressure evolution. The dissociation pressure is far larger than that in the case of high temperature, indicating that the temperature effectively reduces the activation barrier of the dissociation reaction of CCl4. This research improves the understanding of the dissociation reactions of CCl4 and other halogen compounds under high pressures.
Keywords:  crystal structure prediction      decomposition      carbon tetrachloride      high pressure  
Received:  31 March 2013      Revised:  11 July 2013      Accepted manuscript online: 
PACS:  33.15.-e (Properties of molecules)  
  33.15.Fm (Bond strengths, dissociation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974067 and 11104107), the Program of the Science and Technology Department of Jilin Province, China (Grant Nos. 20090534 and 20101508), and the China Postdoctoral Science Foundation (Grant No. 20110491320).
Corresponding Authors:  Sun Cheng-Lin     E-mail:  chenglin@jlu.edu.cn
About author:  33.15.-e; 33.15.Fm

Cite this article: 

Chen Yuan-Zheng (陈元正), Zhou Mi (周密), Sun Mei-Jiao (孙美娇), Li Zuo-Wei (里佐威), Sun Cheng-Lin (孙成林) High-pressure-activated carbon tetrachloride decomposition 2014 Chin. Phys. B 23 023302

[1] Rudman R and Post B 1966 Science 154 1009
[2] Weir C E, Piermarini G J and Block S 1969 J. Chem. Phys. 50 2424
[3] Piermarini G J and Braun A B 1973 J. Chem. Phys. 58 1974
[4] Cohen S, Powers R and Rudman R 1979 Acta Cryst. B 35 1670
[5] Adams D M and Sharma S K 1976 J. Chem. Soc. Dalton Trans. 15 2089
[6] Kawamura H, Kobayashi M, Yamamato Y, Matsui N and Akahama Y 1997 Solid State Commnun. 102 501
[7] Choudhury J, Karumuri S R and Sarkar N K 2008 Pramana J. 71 439
[8] Yurtseven H and Kavruk D 2008 J. Mol. Liq. 139 117
[9] Chen Y Z, Sun S, Li Z W, Ouyang S L, Li D F, Men Z W, Zhou M and Sun C L 2012 Phys. Status Solidi B 249 2113
[10] Walsh J M and Rice M H 1957 J. Chem. Phys. 26 815
[11] Dick R D 1970 J. Chem. Phys. 52 6021
[12] Fat’yanov O V, Ogura T, Nicol M F, Nakamura K G and Kondo K 2000 Appl. Phys. Lett. 77 960
[13] Cheng L T and Mi Z 2009 Chin. Phys. Lett. 26 070701
[14] Yukio S, Tomokazu S and Shinichi N 2010 J. Appl. Phys. 107 033507
[15] Wang Y C, Lü J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[16] Li P, Gao G Y, Wang Y C and Ma Y M 2010 J. Phys. Chem. C 114 21745
[17] Lü J, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[18] Zhu L, Wang H, Wang Y, Lü J, Ma Y M, Cui Q and Zou G 2011 Phys. Rev. Lett. 106 145501
[19] Wang Y C, Liu H Y, Lü J, Zhu L, Wang H and Ma Y M 2011 Nat. Commun. 2 563
[20] Guillaume C L, Gregoryanz E, Degtyareva O, McMahon M, Hanfland M, Evans S, Guthrie M and Sinogeikin S 2011 Nat. Phys. 7 211
[21] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169
[22] Parlinski K and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[23] Choudhury J and Karumuri S R 2008 J. Phys. 71 439
[24] Chakrabory T and Sachida N R 2006 Spectrochim. Acta, Part A 65 406
[25] Gaussian 98, Revision A.6 (Gaussian, Inc., Pittsburgh, 1998)
[26] Yurtseven H and Dildar Y 2011 Korean J. Chem. Eng. 28 252
[27] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884
[28] Sham L J and Schluter M 1983 Phys. Rev. Lett. 51 1888
[29] Godby R W, Schluter M and Sham L J 1988 Phys. Rev. B 37 10159
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[11] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[12] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[13] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[14] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[15] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
No Suggested Reading articles found!