|
|
Accurate equilibrium inversion barrier of ammonia by extrapolation to the one-electron basis set limit |
Li Yong-Qing (李永庆), Song Peng (宋朋), Ma Feng-Cai (马凤才) |
Department of Physics, Liaoning University, Shenyang 110036, China |
|
|
Abstract A scheme based on treating uniform singlet-pair and triplet-pair interactions is suggested to extrapolate electron correlation energy of ammonia, calculated at two basis-set levels of ab initio theory in the infinite one-electron basis-set limit. The dual-level method is tested on the extrapolation of the full correlation in coupled-cluster singles and doubles and in the case also a noniterative perturbative correction for connected triple energies for the C3v and D3h structures of ammonia, with correlation-consistent basis sets of the type cc-pVXZ (X=D,T,Q,5,6) and aug-cc-pVXZ (X=D,T,Q,5). For testing and comparison purposes, the energies reported by Klopper [J. Comput. Chem. 22 1306 (2001)] have been taken. From a corresponding extrapolation of CCSD(T)/AVXZ energies for X =4, 5, we obtain total inversion barriers of 1833.87 cm-1/1832.33 cm-1 for the two/three-parameter extrapolation rules, which are in good agreement with other theoretical extrapolation and empirical values in the literature.
|
Received: 25 April 2013
Revised: 22 May 2013
Accepted manuscript online:
|
PACS:
|
33.15.Hp
|
(Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))
|
|
31.15.vq
|
(Electron correlation calculations for polyatomic molecules)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274149 and 11374353), the Natural Science Foundation of Liaoning Province, China (Grant No. 20121032), the Scientific Research Foundation for Doctors of Liaoning University,the Natural Science Foundation of Liaoning University, and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology, China (Grant No. F12-254-1-00). |
Corresponding Authors:
Li Yong-Qing, Ma Feng-Cai
E-mail: yqli@lnu.edu.cn;fcma@lnu.edu.cn
|
About author: 33.15.Hp; 31.15.Vq |
Cite this article:
Li Yong-Qing (李永庆), Song Peng (宋朋), Ma Feng-Cai (马凤才) Accurate equilibrium inversion barrier of ammonia by extrapolation to the one-electron basis set limit 2014 Chin. Phys. B 23 023301
|
[1] |
Léonad C, Handy N C, Carter S and Bowman J M 2002 Spectrochimica Acta Part A 58 825
|
[2] |
Dewar M J S and Shanshal M 1969 J. Am. Chem. Soc. 91 3654
|
[3] |
Rauk A, Allen L C and Clementi E 1970 J. Chem. Phys. 52 4133
|
[4] |
Botschwina P 1987 J. Chem. Phys. 87 1453
|
[5] |
Spirko V and Kraemer W P 1989 J. Mol. Spectrosc. 133 331
|
[6] |
East A L L and Radom L J 1996 J. Mol. Struct. 376 437
|
[7] |
Jensen F 1996 Chem. Phys. Lett. 261 633
|
[8] |
Lee J S 1997 J. Phys. Chem. 101 8762
|
[9] |
Pesinen J, Minani A and Halonen L 2001 J. Chem. Phys. 115 1243
|
[10] |
Léonad C, Carter S and Handy N C 2003 Chem. Phys. Lett. 370 360
|
[11] |
Csázár A G, Allen W D and Schaefer H F 1998 J. Chem. Phys. 108 9751
|
[12] |
Martin J M L, Lee T J and Taylor P R 1992 J. Chem. Phys. 97 8361
|
[13] |
Klopper W, Samson C C M, Tarczay G and Császár A G 2001 J. Comput. Chem. 13 1306
|
[14] |
Lin H, Thiel W, Yurchenko S N, Carvajal M and Jensen P 2002 J. Chem. Phys. 117 11265
|
[15] |
Rush D and Wiberg K 1997 J. Phys. Chem. A 101 3143
|
[16] |
Wormer P, Olthof E, Engeln R and Reuss J 1993 Chem. Phys. 178 189
|
[17] |
Bunker P, Kraemer W and Špirko V 1984 Can. J. Phys. 62 1801
|
[18] |
Halpern A M and Glendening E D 2001 Chem. Phys. Lett. 333 391
|
[19] |
Vaida V, McCarthy M I, Engelking P C, Rosmus P, Werner H J and Botschwina P 1987 J. Chem. Phys. 86 6677
|
[20] |
Spirko V 1983 J. Mol. Spectrosc. 101 30
|
[21] |
Yang C L, Wang M S, Liu W W, Zhang Z H and Ma X G 2013 Chin. Phys. B 22 063102
|
[22] |
Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
|
[23] |
Li H, Zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 20 123401
|
[24] |
Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C 2012 J. Chem. Phys. 136 194705
|
[25] |
Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 6669
|
[26] |
Varandas A J C 2007 J. Chem. Phys. 126 244105
|
[27] |
Varandas A J C 2000 J. Chem. Phys. 113 8880
|
[28] |
Dunning T H Jr 1989 J. Chem. Phys. 90 1007
|
[29] |
Feller D 1992 J. Chem. Phys. 96 6104
|
[30] |
Li Y Q, Yuan J C, Chen M D, Ma F C and Sun M T 2013 J. Comput. Chem. 34 1686
|
[31] |
Xantheas S S and Dunning T H Jr 1993 J. Phys. Chem. 97 18
|
[32] |
Halkier A, Helgaker T, Jfrgensen P, Klopper W and Olsen J 1999 Chem. Phys. Lett. 302 437
|
[33] |
Jensen F 2005 Theor. Chim. Acta 113 267
|
[34] |
Petersson G A, Malick D K, Frisch M, J and Braunstein M 2005 J. Chem. Phys. 123 074111
|
[35] |
Karton A and Martin J M L 2006 Theor. Chim. Acta 115 330
|
[36] |
Feller D 1993 J. Chem. Phys. 98 7059
|
[37] |
Petersson K A, Woon D F and Dunning T H Jr 1993 J. Chem. Phys. 100 7410
|
[38] |
Varandas A J C 2007 Chem. Phys. Lett. 443 398
|
[39] |
Martin J M L and Taylor P R 1997 J. Chem. Phys. 105 8620
|
[40] |
Lee J S 2000 J. Chem. Phys. 112 10746
|
[41] |
Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644
|
[42] |
Li Y Q and Varandas A J C 2012 Int. J. Quantum Chem. 112 2932
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|