|
|
Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity |
Liu Xin (刘欣)a, Liao Qing-Hong (廖庆洪)b, Fang Guang-Yu (方光宇)a, Wang Yue-Yuan (王月媛)c, Liu Shu-Tian (刘树田)a |
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China; c Key Laboratory for Advanced Functional Materials and Excited State Process of Heilongjiang Province, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China |
|
|
Abstract A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that the interaction time is short, which is important in view of decoherence. In particular, the phase gate can be realized simply with a single interaction between the qubits and the cavity mode. With cavity decay being considered, the fidelity and success probability are both very close to unity.
|
Received: 26 April 2013
Revised: 22 July 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702). |
Corresponding Authors:
Liu Shu-Tian
E-mail: stliu@hit.edu.cn
|
About author: 03.65.Ud; 03.67.Lx; 85.25.Cp |
Cite this article:
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田) Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity 2014 Chin. Phys. B 23 020311
|
[1] |
Makhlin Y, Schon G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[2] |
Orlando T P, Mooij J E, Tian L, Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
|
[3] |
You J Q and Nori F 2005 Phys. Today 58 42
|
[4] |
Clarke J and Wilhelm F K 2008 Nature 453 1031
|
[5] |
Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Nature 421 823
|
[6] |
Majer J B, Paauw F G, Haar A C G, Harmans C J P M and Mooij J E 2005 Phys. Rev. Lett. 94 090501
|
[7] |
Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S and Tsai J S 2007 Science 316 723
|
[8] |
Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
|
[9] |
Liu Y X, Wei L F, Tsai J S and Nori F 2006 Phys. Rev. Lett. 96 067003
|
[10] |
Rigetti C, Blais A and Devoret M 2005 Phys. Rev. Lett. 94 240502
|
[11] |
Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507
|
[12] |
Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 Phys. Rev. Lett. 97 230501
|
[13] |
Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. B 73 094506
|
[14] |
You J Q, Tsai J S and Nori F 2003 Phys. Rev. B 68 024510
|
[15] |
He X L, Liu Y X, You J Q and Nori F 2007 Phys. Rev. A 76 022317
|
[16] |
Chow J M, Corcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J A, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502
|
[17] |
Yang C P and Chu S I 2003 Phys. Rev. A 67 042311
|
[18] |
Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
|
[19] |
Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
|
[20] |
Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
|
[21] |
Shi Z G, Chen X W, Zhu X X and Song K H 2009 Chin. Phys. B 18 910
|
[22] |
Li Y L and Fang M F 2011 Chin. Phys. B 20 050314
|
[23] |
Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
|
[24] |
Zheng S B 2005 Phys. Rev. A 71 062335
|
[25] |
Li Y L, Fang M F and Zeng K 2010 Chin. Phys. B 19 010307
|
[26] |
Liao C G, Chen Z H and Luo C L 2010 Acta Phys. Sin. 59 8526 (in Chinese)
|
[27] |
Gong S Q, Wang Z Y, Feng X L and Xu Z Z 2000 Chin. Phys. 9 94
|
[28] |
Yang Z B 2007 Chin. Phys. 16 1963
|
[29] |
Song K H, Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310
|
[30] |
Yang C P and Han S 2004 Phys. Rev. A 70 062323
|
[31] |
Schoelkopf R J and Girvin S M 2008 Nature 451 664
|
[32] |
Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|