|
|
Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants |
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新) |
Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We propose a scheme for a fast generating three-qubit W state in a superconducting system by using a technique of shortcuts to adiabaticity, Lewis-Riesenfeld invariants. Three identical superconducting qubits (SQs) are connected by two coplanar waveguide resonators (CPWRs) capacitively. Under a certain limit condition, we convert the complicated SQ system into a simple three-state system. By designing experimentally accessible harmonic pulses, a three-SQ W state is implemented with quite short operation time and high fidelity. Numerical simulations prove that the scheme is robust against the parameter deviation. In addition, we also give detailed discussion about the scheme robustness against decoherence.
|
Received: 18 January 2017
Revised: 02 March 2017
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11464046). |
Corresponding Authors:
Xin Ji
E-mail: jixin@ybu.edu.cn
|
Cite this article:
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新) Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants 2017 Chin. Phys. B 26 060306
|
[1] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[2] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[3] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[4] |
Vidal G 2003 Phys. Rev. Lett. 91 147902
|
[5] |
Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[6] |
Greenberger D M, Horne M A and Zeilinger A 1989 Going beyond Bell's theorem. In Bell's theorem, quantum theory, and conceptions of the universe (Dordrecht: Kluwer) p. 69
|
[7] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[8] |
Bastin T, Thiel C, von Zanthier J, Lamata L, Solano E and Agarwal G S 2009 Phys. Rev. Lett. 102 053601
|
[9] |
Wang X W, Yang G J, Su Y H and Xie M 2009 Quantum Inf. Process. 8 431
|
[10] |
Chen R X and Shen L T 2011 Phys. Lett. A 375 3840
|
[11] |
Song P J, Lü X Y, Si L G and Yang X X 2011 Chin. Phys. B 20 050308
|
[12] |
Lu M, Xia Y, Song J and An N B 2013 J. Opt. Soc. Am. B 30 2142
|
[13] |
Chen Y H, Xia Y and Song J 2013 Quantum Inf. Process. 12 3771
|
[14] |
Zhang C L, Li W Z and Chen M F 2013 Opt. Commun. 311 301
|
[15] |
Zhang C L, Li W Z and Chen M F 2014 Opt. Commun. 312 269
|
[16] |
Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
|
[17] |
Su S L, Chen L, Guo Q, Wang H F, Zhu A D and Zhang S 2015 Chin. Phys. B 24 020305
|
[18] |
Fan R H, Guo B H, Guo J J, et a. 2015 Acta Phys. Sin. 64 0140301 (in Chinese)
|
[19] |
Geetha P J, Yashodamma K O and Sudha 2015 Chin. Phys. B 24 110302
|
[20] |
Gu Z Y and Qian S W 2015 Chin. Phys. B 24 040301
|
[21] |
Zhan H T, Yu X T, Xiong P Y and Zhang Z C 2016 Chin. Phys. B 25 050305
|
[22] |
Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[23] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[24] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
|
[25] |
Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Nature 421 823
|
[26] |
Deng Z J, Gao K L and Feng M 2006 Phys. Rev. A 74 064303
|
[27] |
Song K H, Xiang S H, Liu Q and Lu D H 2007 Phys. Rev. A 75 032347
|
[28] |
Chen M F, Zhang C L and Ma S S 2013 Opt. Commun. 306 21
|
[29] |
Wei X and Chen M F 2015 Quantum Inf. Process. 14 2419
|
[30] |
Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
|
[31] |
Demirplak M and Rice S A 2003 J. Phys. Chem. A 107 9937
|
[32] |
Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53
|
[33] |
Zhang C L and Chen M F 2013 Chin. Phys. B 22 050307
|
[34] |
Zhang C L and Chen M F 2015 Chin. Phys. B 24 070310
|
[35] |
Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
|
[36] |
del Campo A 2013 Phys. Rev. Lett. 111 100502
|
[37] |
Torrontegui E, Ibáñez S, Martínez-Garaot S, Modugno M, del Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X and Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
|
[38] |
Martínez-Garaot S, Torrontegui E, Chen X and Muga J G 2014 Phys. Rev. A 89 053408
|
[39] |
Ibáñez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett. 109 100403
|
[40] |
Chen Y H, Xia Y, Chen Q Q and Song J 2014 Phys. Rev. A 89 033856
|
[41] |
Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
|
[42] |
Song X K, Ai Q, Qiu J and Deng F G 2016 Phys. Rev. A 93 052324
|
[43] |
Chen Y H, Xia Y, Wu Q C, Huang B H and Song J 2016 Phys. Rev. A 93 052109
|
[44] |
Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
|
[45] |
Du Y X, Liang Z T, Li Y C, Yue, X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479
|
[46] |
An S, Lv D, del Campo A and Kim K 2016 Nat. Commun. 7 12999
|
[47] |
Chen Y H, Xia Y, Chen Q Q and Song J 2014 Laser Phys. Lett. 11 115201
|
[48] |
Huang X B, Zhong Z R and Chen Y H 2015 Quantum Inf. Process. 14 4475
|
[49] |
Chen Y H, Huang B H, Song J and Xia Y 2016 Opt. Commun. 380 140
|
[50] |
Kang Y H, Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 36737
|
[51] |
Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2016 Phys. Rev. A 94 052311
|
[52] |
Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458
|
[53] |
Chen X and Muga J G 2012 Phys. Rev. A 86 033405
|
[54] |
Kuklinski J R, Gaubatz U, Hioe F T and Bergmann K 1989 Phys. Rev. A 40 6741
|
[55] |
Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|