|
|
Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities |
Sun Qian (孙倩)a, He Juan (何娟)a b, Ye Liu (叶柳)a |
a School of Physics & Material Science, Anhui University, Hefei 230601, China; b School of Physics & Electronics Science, Fuyang Normal College, Fuyang 236037, China |
|
|
Abstract We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can implement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.
|
Received: 19 September 2013
Revised: 28 November 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002 and 61275119), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003), and the Natural Science Research Project of Education Department of Anhui Province, China (Grant Nos. KJ2013A205, KJ2011ZD07, and KJ2012Z309). |
Corresponding Authors:
Ye Liu
E-mail: yeliu@ahu.edu.cn
|
Cite this article:
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳) Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities 2014 Chin. Phys. B 23 060305
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[3] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[4] |
Man Z X and Xia Y J 2008 Chin. Phys. B 17 4375
|
[5] |
Chen M F 2006 Chin. Phys. 15 2847
|
[6] |
Wang J, Yu L B and Ye L 2007 Chin. Phys. 16 2211
|
[7] |
Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
|
[8] |
Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
|
[9] |
Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
|
[10] |
Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimand J M and Haroche S 1997 Phys. Rev. Lett. 79 03502
|
[11] |
Gorbachev V N, Trubilko A I and Rodichkina A A 2003 Phys. Lett. A 314 267
|
[12] |
Jin G S, Li S S, Feng S L and Zheng H Z 2004 Phys. Rev. A 69 034302
|
[13] |
Zha X W and Zhang C M 2008 Acta Phys. Sin. 57 1339 (in Chiense)
|
[14] |
Zhang B L, Meng X G and Wang J S 2012 Chin. Phys. B 21 030304
|
[15] |
Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F and Jiang N Q 2012 Chin. Phys. B 21 044209
|
[16] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[17] |
Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
|
[18] |
Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
|
[19] |
Fang X, Zhu X, Feng M, Mao X and Du F 2000 Phys. Rev. A 61 022307
|
[20] |
Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
|
[21] |
Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
|
[22] |
Hao J C, Li C F and Guo G C 2000 Phys. Lett. A 278 113
|
[23] |
Lin X M, Zhou Z W, Xue P, Gu Y J and Guo G C 2003 Phys. Lett. A 313 351
|
[24] |
Ye L and Guo G C 2005 Phys. Rev. A 71 034304
|
[25] |
Ye L and Yu L B 2005 Phys. Lett. A 346 330
|
[26] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[27] |
DÄur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[28] |
Acín A, Bruß D, Lewenstein M and Sanpera A 2011 Phys. Rev. Lett. 87 040401
|
[29] |
Sim S, Jin J and Kwon Y 2005 Int. J. Theor. Phys. 44 1419
|
[30] |
Guo Q, Cheng L Y, Wang H F, Zhang S and Yeon K H 2012 Opt. Commun. 285 1571
|
[31] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[32] |
Wang X W, Zhang D Y, Tang S Q, Xie L J, Wang Z Y and Kuang L M 2012 Phys. Rev. A 85 052326
|
[33] |
Chen X D, Xiao S J, Gu Y J and Lin X M 2010 Acta Phys. Sin. 59 5251 (in Chiense)
|
[34] |
Ye L and Guo G C 2002 Chin. Phys. 11 996
|
[35] |
Yu C S, Yi X X, Song H S and Mei D 2007 Phys. Rev. A 75 044301
|
[36] |
Su S L, Guo Q, Zhu L, Wang H F and Zhang S 2012 J. Opt. Soc. Am. B 29 002827
|
[37] |
He J, Ye L and Ni Z X 2008 Chin. Phys. B 17 1597
|
[38] |
Zhu M Z, Zhao C R and Ye L 2011 Opt. Commun. 284 5394
|
[39] |
Zhao C R and Ye L 2011 Opt. Commun. 284 541
|
[40] |
Zhao C R and Ye L 2011 Phys. Lett. A 375 401
|
[41] |
Gao M, Hu W H and Li C Z 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3525
|
[42] |
Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
|
[43] |
Zhu M Z and Yin X G 2013 J. Opt. Soc. Am. B 30 355
|
[44] |
Mei F, Yu Y F, Feng X L, Zhu S L and Zhang Z M 2010 Europhys. Lett. 91 10001
|
[45] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) p. 124
|
[46] |
Zhao C R, Zhu M Z and Ye L 2011 J. Opt. Soc. Am. B 28 1740
|
[47] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[48] |
Riebe M, Häffner H, Roos C F, Hänsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R 2004 Nature 429 734
|
[49] |
Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601
|
[50] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[51] |
Wei H, Yang W L, Deng Z J and Feng M 2008 Phys. Rev. A 78 014304
|
[52] |
Mei F, Feng M, Yu Y F and Zhang Z M 2009 Phys. Rev. A 80 042319
|
[53] |
Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601
|
[54] |
Numann S, Hijlkema M, Weber B, Rohde F, Rempe G and Kuhn A 2005 Phys. Rev. Lett. 95 173602
|
[55] |
Su S L, Cheng L Y, Wang H F and Zhang S 2013 Opt. Commun. 293 172
|
[56] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[57] |
Polzik E S, Carri J and Kimble H J 1992 Phys. Rev. Lett. 68 3020
|
[58] |
Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M and Weinfurter H 2008 Phys. Rev. Lett. 101 260403
|
[59] |
Chen Q and Feng M 2009 Phys. Rev. A 79 064304
|
[60] |
An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|