|
|
Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits |
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新) |
Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract As one of the most promising candidates for implementing quantum computers, superconducting qubits (SQs) are adopted for fast generating the Greenberger-Horne-Zeilinger (GHZ) state by using invariants-based shortcuts. Three SQs are separated and connected by two coplanar waveguide resonators (CPWRs) capacitively. The complicated system is skillfully simplified to a three-state system, and a GHZ state among three SQs is fast generated with a very high fidelity and simple driving pulses. Numerical simulations indicate the scheme is insensitive to parameter deviations. Besides, the robustness of the scheme against decoherence is discussed in detail.
|
Received: 17 March 2017
Revised: 04 May 2017
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11464046). |
Corresponding Authors:
Xin Ji
E-mail: jixin@ybu.edu.cn
|
Cite this article:
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新) Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits 2017 Chin. Phys. B 26 090301
|
[1] |
Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54
|
[2] |
Peres A and Terno D 2004 Rev. Mod. Phys. 76 93
|
[3] |
Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[4] |
Shor PW1996 Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS) (Los Alamitos: IEEE Press) p. 56
|
[5] |
Knill E 2005 Nature 434 39
|
[6] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[7] |
Zeilinger A, Horne M A, Weinfurter H and Zukowski M 1997 Phys. Rev. Lett. 78 3031
|
[8] |
Zheng S B 2001 Phys. Rev. Lett. 87 230404
|
[9] |
Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
|
[10] |
Su X L, Tan A H, Jia X J, Zhang J, Xie C D and Peng K C 2007 Phys. Rev. Lett. 98 070502
|
[11] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[12] |
Su S L, Chen L, Guo Q, Wang H F, Zhu A D and Zhang S 2015 Chin. Phys. B 24 020305
|
[13] |
Bishop L S, Tornberg L, Price D, Ginossar E, Nunnenkamp A, Houck A A, Gambetta J M, Koch J, Johansson G, Girvin S M and Schoelkopf R J 2009 New J. Phys. 11 073040
|
[14] |
Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
|
[15] |
Aldana S, Wang Y D and Bruder C 2011 Phys. Rev. B 84 134519
|
[16] |
Yang C P 2011 Phys. Rev. A 83 062302
|
[17] |
Yang C P, Su Q P and Han S 2012 Phys. Rev. A 86 022329
|
[18] |
Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[19] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[20] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
|
[21] |
Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Nature 421 823
|
[22] |
Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
|
[23] |
Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53
|
[24] |
Zhang C L and Chen M F 2015 Chin. Phys. B 24 070310
|
[25] |
Song P J, Lü X Y, Si L G and Yang X X 2011 Chin. Phys. B 20 050308
|
[26] |
Hao S Y, Xia Y, Song J and An N B 2013 J. Opt. Soc. Am. B 30 468
|
[27] |
Zhang C L and Chen M F 2013 Chin. Phys. B 22 050307
|
[28] |
Zhang C L, Li W Z and Chen M F 2014 Opt. Commun. 312 269
|
[29] |
Wu J L, Song C, Xu J, Yu L, Ji X and Zhang S 2016 Quantum Inf. Process. 15 3663
|
[30] |
Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
|
[31] |
Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 83 062116
|
[32] |
Chen X and Muga J G 2012 Phys. Rev. A 86 033405
|
[33] |
del Campo A 2013 Phys. Rev. Lett. 111 100502
|
[34] |
Torrontegui E, Ibáñez S, Martínez-Garaot S, Modugno M, del Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X and Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
|
[35] |
Martínez-Garaot S, Torrontegui E, Chen X and Muga J G 2014 Phys. Rev. A 89 053408
|
[36] |
Ibáñez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett. 109 100403
|
[37] |
Ibáñez S, Chen X and Muga J G 2013 Phys. Rev. A 87 043402
|
[38] |
Ibáñez S, Li Y C, Chen X and Muga J G 2015 Phys. Rev. A 92 062136
|
[39] |
Song X K, Ai Q, Qiu J and Deng F G 2016 Phys. Rev. A 93 052324
|
[40] |
Chen Y H, Xia Y, Wu Q C, Huang B H and Song J 2016 Phys. Rev. A 93 052109
|
[41] |
Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
|
[42] |
Kang Y H, Chen Y H, Wu Q C, Huang B H, Xia Y and Song J 2016 Sci. Rep. 6 30151
|
[43] |
Kang Y H, Huang B H, Lu P M and Xia Y 2017 Laser Phys. Lett. 14 025201
|
[44] |
Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 38484
|
[45] |
Chen Y H, Xia Y, Chen Q Q and Song J 2014 Phys. Rev. A 89 033856
|
[46] |
Chen Y H, Xia Y, Chen Q Q and Song J 2014 Laser Phys. Lett. 11 115201
|
[47] |
Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
|
[48] |
Wu J L, Ji X and Zhang S 2016 Sci. Rep. 6 33669
|
[49] |
Wu J L, Ji X and Zhang S 2016 J. Opt. Soc. Am. B 33 2026
|
[50] |
Song C, Su S L, Wu J L, Wang D Y, Ji X and Zhang S 2016 Phys. Rev. A 93 062321
|
[51] |
Song C, Su S L, Bai C H, Ji X and Zhang S 2016 Quantum Inf. Process. 15 4159
|
[52] |
Zhang J, Kyaw T H, Tong D M, Sjöqvist E and Kwek L C 2015 Sci. Rep. 5 18414
|
[53] |
Liang Y, Wu Q C, Su S L, Ji X and Zhang S 2015 Phys. Rev. A 91 032304
|
[54] |
Liang Y, Song C, Ji X and Zhang S 2015 Opt. Express 23 23798
|
[55] |
Liang Y, Ji X,Wang H F and Zhang S 2015 Laser Phys. Lett. 12 115201
|
[56] |
Chen Y H, Xia Y, Song J and Chen Q Q 2015 Sci. Rep. 5 15616
|
[57] |
ShanWJ, Xia Y, Chen Y H and Song J 2016 Quantum Inf. Process. 15 2359
|
[58] |
Huang B H, Chen Y H, Wu Q C, Song J and Xia Y 2016 Laser Phys. Lett. 13 105202
|
[59] |
Zhang X, Chen Y H, Wu Q C, Shi Z C, Song J and Xia Y 2017 Laser Phys. 27 015202
|
[60] |
Ye L X, Lin X, Chen X, He J, Yang R C and Liu H Y 2016 Quantum Inf. Process. 15 4159
|
[61] |
Huang X B, Chen Y H and Wang Z 2016 Sci. Rep. 5 25707
|
[62] |
Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2016 Phys. Rev. A 94 052311
|
[63] |
Kang Y H, Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 36737
|
[64] |
Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306
|
[65] |
Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458
|
[66] |
Kuklinski J R, Gaubatz U, Hioe F T and Bergmann K 1989 Phys. Rev. A 40 6741
|
[67] |
Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|