Abstract Using two tripartite Greenberger–Horne–Zeilinger (GHZ) states as the shared channels, we investigate the noise effects on the deterministic joint remote preparation of an arbitrary two-qubit state. By unitary matrix decomposition procedure, we first construct the quantum logic circuit of the deterministic joint remote state preparation protocol. Then, we analytically derive the fidelity and the average fidelity for the deterministic joint remote preparation of an arbitrary two-qubit state and of four types of special two-qubit states under the influence of the Pauli noises. It is found that the fidelity depends on the noise types, the qubit-environment coupling strength, and the state to be remotely prepared. Moreover, even if the two GHZ channels are subject to the same environmental noises, the average fidelities for remotely preparing different two-qubit states display different time evolution behaviors. The remote preparation of the identical two-qubit states also shows that the average fidelities affected by different noisy environments exhibit different evolution actions.

Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11034002, 11104075, and 11134003), the National Basic Research Program of China (Grant Nos. 2011CB921602 and 2012CB821302), and the Open Fund from the SKLPS of ECNU.

Corresponding Authors:
Liu Jin-Ming
E-mail: jmliu@phy.ecnu.edu.cn

About author: 03.67.Hk; 03.65.Ud

Cite this article:

Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷) Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise 2014 Chin. Phys. B 23 020312

[1]

Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895

[2]

Lo H K 2000 Phys. Rev. A 62 012313

[3]

Pati A K 2000 Phys. Rev. A 63 014302

[4]

Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902

[5]

Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901

[6]

Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905

[7]

Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901

[8]

Solis-Prosser M A and Neves L 2011 Phys. Rev. A 84 012330

[9]

Zeng B and Zhang P 2002 Phys. Rev. A 65 022316

[10]

Liu J M and Wang Y Z 2003 Phys. Lett. A 316 159

[11]

Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310

[12]

Liu J M, Feng X L and Oh C H 2009 Europhys. Lett. 87 30006

[13]

Qin S J and Wen Q Y 2010 Chin. Phys. B 19 020310

[14]

Dai H Y, Zhang M, Chen J M and Li C Z 2011 Chin. Phys. B 20 050310

[15]

Dakić B, Lipp Y O, Ma X S, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č and Walther P 2012 Nat. Phys. 8 666

[16]

Dai H Y, Chen P X, Liang L M and Li C Z 2006 Phys. Lett. A 355 285

[17]

Kurucz Z, Adam P and Janszky J 2006 Phys. Rev. A 73 062301

[18]

Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271

[19]

Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504

[20]

Xiang G Y, Li J, Yu B and Guo G C 2005 Phys. Rev. A 72 012315

[21]

Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407

[22]

Wu W, Liu W T, Chen P X and Li C Z 2010 Phys. Rev. A 81 042301

[23]

Mikami H and Kobayashi T 2007 Phys. Rev. A 75 022325

[24]

Xia Y, Song J and Song H S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3719

[25]

An N B and Kim J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 095501

[26]

An N B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125501

[27]

Wang D, Zha X W and Lan Q 2011 Opt. Commun. 284 5853

[28]

Luo M X, Chen X B, Ma S Y, Niu X X and Yang Y X 2010 Opt. Commun. 283 4796

[29]

An N B, Bich C T and Don N V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135506

[30]

Zhan Y B, Hu B L and Ma P C 2011 J. Phys. B: At. Mol. Opt. Phys. 44 095501

[31]

Chen Q Q, Xia Y and An N B 2011 Opt. Commun. 284 2617

[32]

Luo M X, Chen X B, Yang Y X and Niu X X 2012 Quantum. Inf. Process. 11 751

[33]

Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501

[34]

An N B, Bich C T and Don N V 2011 Phys. Lett. A 375 3570

[35]

Bich C T, Don N V and An N B 2012 Int. J. Theor. Phys. 51 2272

[36]

Chen Q Q, Xia Y and Song J 2012 J. Phys. A: Math. Theor. 45 055303

[37]

Xia Y, Chen Q Q and An N B 2012 J. Phys. A: Math. Theor. 45 335306

[38]

Wang Y and Ji X 2013 Chin. Phys. B 22 020306

[39]

Liang H Q, Liu J M, Feng S S and Chen J G 2011 J. Phys. B: At. Mol. Opt. Phys. 44 115506

[40]

Zhang Y L, Zhou Q P, Kang G D, Zhou F and Wang X B 2012 Int. J. Quantum. Inf. 10 1250030

[41]

Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457

[42]

Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

[43]

Liu J M, Zhang Y S and Guo G C 2003 Chin. Phys. 12 251

[44]

Lindblad G 1976 Commun. Math. Phys. 48 119

[45]

Jung E, Hwang M R, Ju Y H, Kim M S, Yoo S K, Kim H, Park D K, Son J W, Tamaryan S and Cha S K 2008 Phys. Rev. A 78 012312

[46]

Fan H, Imai H, Matsumoto K and Wang X B 2003 Phys. Rev. A 67 022317

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.