|
|
Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems |
Cao Cong (曹聪)a, Liu Gang (刘刚)c, Zhang Ru (张茹)a b, Wang Chuan (王川)a b |
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; c School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum information processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a potential system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.
|
Received: 22 July 2013
Revised: 17 September 2013
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2010CB923202), the Fundamental Research Funds for the Central Universities, China, and the National Natural Science Foundation of China (Grant Nos. 61177085, 61205117, and 61377097). |
Corresponding Authors:
Wang Chuan
E-mail: wangchuan82@gmail.com
|
About author: 03.67.Lx; 42.50.Dv |
Cite this article:
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川) Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems 2014 Chin. Phys. B 23 040304
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
|
[3] |
Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
|
[4] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[5] |
Bonato C, Haupt F, Oemrawsingh S S, Gudat J, Ding D, van Exter M P and Bouwmeester D 2010 Phys. Rev. Lett. 104 160503
|
[6] |
Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
|
[7] |
Grover L K 1997 Phys. Rev. Lett. 79 325
|
[8] |
Shor P W 1995 Phys. Rev. A 52 R2493
|
[9] |
Sasura M and Buzek V 2001 Phys. Rev. A 64 012305
|
[10] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[11] |
Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325
|
[12] |
Pan G Z, Yang M and Cao Z L 2009 Chin. Phys. B 18 2319
|
[13] |
Ren B C, Wei H R, Hua M, Li T and Deng F G 2012 Opt. Express 20 24664
|
[14] |
Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093
|
[15] |
Wei H R and Deng F G 2013 Phys. Rev. A 87 022305
|
[16] |
Cheng L Y, Wang H F, Zhang S and Yeon K H 2013 Chin. Phys. B 22 050306
|
[17] |
Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
|
[18] |
Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
|
[19] |
Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C 2006 Phys. Rev. A 73 012323
|
[20] |
Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
|
[21] |
Wei H, Yang W L, Deng Z J and Feng M 2008 Phys. Rev. A 78 014304
|
[22] |
Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nat. Phys. 2 408
|
[23] |
Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Science 320 1326
|
[24] |
Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
|
[25] |
Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501
|
[26] |
Wolters J, Schell A W, Kewes G, Nusse N, Schoengen M, Doscher H, Hannappel T, Lochel B, Barth M and Benson O 2010 Appl. Phys. Lett. 97 141108
|
[27] |
Young A, Hu C Y, Marseglia L, Harrison J P, O'Brien J L and Rarity J G 2009 New J. Phys. 11 013007
|
[28] |
Buckley B B, Fuchs G D, Bassett L C and Awschalom D D 2010 Science 330 1212
|
[29] |
Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K I and Kimble H J 2008 Science 319 1062
|
[30] |
An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
|
[31] |
Chen Q and Feng M 2009 Phys. Rev. A 79 064304
|
[32] |
Chen Q, Yang W L, Feng M and Du J F 2011 Phys. Rev. A 83 054305
|
[33] |
Cheng L Y, Wang H F, Zhang S and Yeon K H 2013 Opt. Express 21 5988
|
[34] |
Tong X, Wang C, Cao C, He L Y and Zhang R 2014 Opt. Commun. 310 166
|
[35] |
Wang C, Zhang Y, Jin G S and Zhang R 2012 J. Opt. Soc. Am. B 29 3349
|
[36] |
He L Y, Cao C and Wang C 2013 Opt. Commun. 298 260
|
[37] |
Hong J and Lee H W 2002 Phys. Rev. Lett. 89 237901
|
[38] |
Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
|
[39] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
|
[40] |
Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
|
[41] |
Barclay P E, Fu K M C, Santori C and Beausoleil R G 2009 Appl. Phys. Lett. 95 191115
|
[42] |
Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J and von Borczyskowski C 1997 Science 276 2012
|
[43] |
Hanson R, Gywat O and Awschalom D D 2006 Phys. Rev. B 74 161203(R)
|
[44] |
Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham M L, Twitchen D J, Pezzagna S, Meijer J, Twamley J, Jelezko F and Wrachtrup J 2010 Nat. Phys. 6 249
|
[45] |
Shi F, Rong X, Xu N, Wang Y, Wu J, Chong B, Peng X, Kniepert J, Schoenfeld R S, Harneit W, Feng M and Du J 2010 Phys. Rev. Lett. 105 040504
|
[46] |
Park Y S, Cook A K and Wang H 2006 Nano Lett. 6 2075
|
[47] |
Larsson M, Dinyari K N and Wang H 2009 Nano Lett. 9 1447
|
[48] |
McCutcheon M W and Loncar M 2008 Opt. Express 16 19136
|
[49] |
Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 Nat. Phys. 3 253
|
[50] |
Shields A J 2007 Nat. Photonics 1 215
|
[51] |
Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J and Kimble H J 2009 Phys. Rev. Lett. 102 083601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|