Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110304    DOI: 10.1088/1674-1056/24/11/110304
GENERAL Prev   Next  

Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit

Wang Dong-Mei (王冬梅)a b, Qian Yi (钱懿)a, Xu Jing-Bo (许晶波)a, Yu You-Hong (俞攸红)b
a Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027, China;
b Applied Physics Department, Zhejiang University of Technology, Hangzhou 310032, China
Abstract  We investigate the influence of the dynamical decoupling pulses on the quantum correlations in a superconducting system consisting of two noninteracting qubits interacting with their own data buses. It is found that the geometric discord and entanglement between the two superconducting qubits can be increased by applying a train of π-phase pulses. We then proceed to explore how the decoupling pulses affect the quantum transfer of information between the two superconducting qubits by making use of the change of trace distance.
Keywords:  quantum correlations      superconducting qubits      decoupling  
Received:  12 April 2015      Revised:  17 July 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ya  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274274).
Corresponding Authors:  Xu Jing-Bo     E-mail:  xujb@zju.edu.cn

Cite this article: 

Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红) Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit 2015 Chin. Phys. B 24 110304

[1] Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Marzo J J;1999 Phys. Rev. B 60 15398
[2] Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J and Wellstood F C;2003 Science 300 1548
[3] Zhu X, Kemp A, Saito S and Sembab K;2010 App. Phys. Lett. 97 102503
[4] Makhlin Y, Schön G and Shnirman A;2001 Rev. Mod. Phys. 73 357
[5] Clarke J and Wilhelm F K;2008 Nature 453 1031
[6] Pashkin Yu A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S;2003 Nature 421 823
[7] Yamamoto T, Pashkin Yu A, Astafiev O, Nakamura Y and Tsai J S;2003 Nature 425 941
[8] Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C E, Ustinov A V and Clarke J;2006 Science 314 1427
[9] Blais A, A M van den Brink and Zagoskin A M;2003 Phys. Rev. Lett. 90 127901
[10] Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H;2006 Phys. Rev. Lett. 96 127006
[11] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J;2007 Nature 449 443
[12] Liu Y X, Sun C P and Nori F;2006 Phy. Rev. A 74 052321
[13] Chen M Y, Matisse W Y Tu and Zhang W M;2009 Phys. Rev. B 80 214538
[14] Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt MS, Nemoto K, Kasu M, Mizuochi N and Semba K;2011 Nature 478 221
[15] Wang D M, Xu H S, Xu J B and Yu Y H;2013 J. Opt. Soc. Am. B 30 2277
[16] Nielsen M A and Chuand I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press, Cambridge)
[17] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S;2000 Science 288 2024
[18] Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R;1999 Phys. Rev. Lett. 83 1054
[19] Li Y J, Liu J M and Zhang Y;2014 Chin. Phys. B 23 120305
[20] Datta A, Shaji A and Caves C M;2008 Phys. Rev. Lett. 100 050502
[21] Lanyon B P, Barbieri M, Almeida M P and White A G;2008 Phys. Rev. Lett. 101 200501
[22] Ollivier H and Zurek W H;2001 Phys. Rev. Lett. 88 017901
[23] Dakić B, Vedral V and Brukner Č;2010 Phys. Rev. Lett. 105 190502
[24] Girolami D, Adesso G;2011 Phys. Rev. A 83 052108
[25] Vitali D and Tombesi P;1999 Phy. Rev. A 59 4178
[26] Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č and Walther P;2012 Nat. Phys. 8 666
[27] Altintas F;2010 Opt. Comm. 283 5264
[28] Wootters W K;1998 Phys. Rev. Lett. 80 2245
[29] Laine E M, Piilo J and Breuer H P;2010 Eur. Phys. Lett. 92 60010
[30] Smirne A, Breuer H P, Piilo J and Vacchini B;2010 Phys. Rev. A 82 062114
[31] Breuer H P, Laine E M and Piilo J;2009 Phys. Rev. Lett. 103 210401
[32] Laine E M, Piilo J and Breuer H P;2010 Phys. Rev. A 81 062115
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[3] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[4] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[5] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[6] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[7] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[8] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[9] Effects of imperfect pulses on dynamical decoupling using quantum trajectory method
Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(12): 120303.
[10] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[11] Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(6): 060306.
[12] Analysis and experiments of self-injection magnetron
Yi Zhang(张益), Wen-Jun Ye(叶文军), Ping Yuan(袁萍), Huan-Cheng Zhu(朱铧丞), Yang Yang(杨阳), Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2016, 25(4): 048402.
[13] Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating
Ling-Zhi Huang(黄凌志), Yong Xiao(肖勇), Ji-Hong Wen(温激鸿), Hai-Bin Yang(杨海滨), Xi-Sen Wen(温熙森). Chin. Phys. B, 2016, 25(2): 024302.
[14] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
[15] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田). Chin. Phys. B, 2014, 23(2): 020311.
No Suggested Reading articles found!