|
|
Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit |
Wang Dong-Mei (王冬梅)a b, Qian Yi (钱懿)a, Xu Jing-Bo (许晶波)a, Yu You-Hong (俞攸红)b |
a Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027, China; b Applied Physics Department, Zhejiang University of Technology, Hangzhou 310032, China |
|
|
Abstract We investigate the influence of the dynamical decoupling pulses on the quantum correlations in a superconducting system consisting of two noninteracting qubits interacting with their own data buses. It is found that the geometric discord and entanglement between the two superconducting qubits can be increased by applying a train of π-phase pulses. We then proceed to explore how the decoupling pulses affect the quantum transfer of information between the two superconducting qubits by making use of the change of trace distance.
|
Received: 12 April 2015
Revised: 17 July 2015
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ya
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274274). |
Corresponding Authors:
Xu Jing-Bo
E-mail: xujb@zju.edu.cn
|
Cite this article:
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红) Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit 2015 Chin. Phys. B 24 110304
|
[1] |
Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Marzo J J;1999 Phys. Rev. B 60 15398
|
[2] |
Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J and Wellstood F C;2003 Science 300 1548
|
[3] |
Zhu X, Kemp A, Saito S and Sembab K;2010 App. Phys. Lett. 97 102503
|
[4] |
Makhlin Y, Schön G and Shnirman A;2001 Rev. Mod. Phys. 73 357
|
[5] |
Clarke J and Wilhelm F K;2008 Nature 453 1031
|
[6] |
Pashkin Yu A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S;2003 Nature 421 823
|
[7] |
Yamamoto T, Pashkin Yu A, Astafiev O, Nakamura Y and Tsai J S;2003 Nature 425 941
|
[8] |
Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C E, Ustinov A V and Clarke J;2006 Science 314 1427
|
[9] |
Blais A, A M van den Brink and Zagoskin A M;2003 Phys. Rev. Lett. 90 127901
|
[10] |
Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H;2006 Phys. Rev. Lett. 96 127006
|
[11] |
Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J;2007 Nature 449 443
|
[12] |
Liu Y X, Sun C P and Nori F;2006 Phy. Rev. A 74 052321
|
[13] |
Chen M Y, Matisse W Y Tu and Zhang W M;2009 Phys. Rev. B 80 214538
|
[14] |
Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt MS, Nemoto K, Kasu M, Mizuochi N and Semba K;2011 Nature 478 221
|
[15] |
Wang D M, Xu H S, Xu J B and Yu Y H;2013 J. Opt. Soc. Am. B 30 2277
|
[16] |
Nielsen M A and Chuand I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press, Cambridge)
|
[17] |
Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S;2000 Science 288 2024
|
[18] |
Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R;1999 Phys. Rev. Lett. 83 1054
|
[19] |
Li Y J, Liu J M and Zhang Y;2014 Chin. Phys. B 23 120305
|
[20] |
Datta A, Shaji A and Caves C M;2008 Phys. Rev. Lett. 100 050502
|
[21] |
Lanyon B P, Barbieri M, Almeida M P and White A G;2008 Phys. Rev. Lett. 101 200501
|
[22] |
Ollivier H and Zurek W H;2001 Phys. Rev. Lett. 88 017901
|
[23] |
Dakić B, Vedral V and Brukner Č;2010 Phys. Rev. Lett. 105 190502
|
[24] |
Girolami D, Adesso G;2011 Phys. Rev. A 83 052108
|
[25] |
Vitali D and Tombesi P;1999 Phy. Rev. A 59 4178
|
[26] |
Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č and Walther P;2012 Nat. Phys. 8 666
|
[27] |
Altintas F;2010 Opt. Comm. 283 5264
|
[28] |
Wootters W K;1998 Phys. Rev. Lett. 80 2245
|
[29] |
Laine E M, Piilo J and Breuer H P;2010 Eur. Phys. Lett. 92 60010
|
[30] |
Smirne A, Breuer H P, Piilo J and Vacchini B;2010 Phys. Rev. A 82 062114
|
[31] |
Breuer H P, Laine E M and Piilo J;2009 Phys. Rev. Lett. 103 210401
|
[32] |
Laine E M, Piilo J and Breuer H P;2010 Phys. Rev. A 81 062115
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|