Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030303    DOI: 10.1088/1674-1056/ac2299
GENERAL Prev   Next  

Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames

Qian Dong(董茜)1,†, R. Santana Carrillo1, Guo-Hua Sun(孙国华)2,‡, and Shi-Hai Dong(董世海)3,4,§
Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico;
2 Catedratica CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX ′ 07738, Mexico;
3 Research Center for Quantum Physics, Huzhou University, Huzhou 313000, China;
4 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
Abstract  Using a single-mode approximation, we carry out the entanglement measures, e.g., the negativity and von Neumann entropy when a tetrapartite generalized GHZ state is treated in a noninertial frame, but only uniform acceleration is considered for simplicity. In terms of explicit negativity calculated, we notice that the difference between the algebraic average $\pi_{4}$ and geometric average $\varPi_{4}$ is very small with the increasing accelerated observers and they are totally equal when all four qubits are accelerated simultaneously. The entanglement properties are discussed from one accelerated observer to all four accelerated observers. It is shown that the entanglement still exists even if the acceleration parameter $r$ goes to infinity. It is interesting to discover that all 1-1 tangles are equal to zero, but 1-3 and 2-2 tangles always decrease when the acceleration parameter $r$ increases. We also study the von Neumann entropy and find that it increases with the number of the accelerated observers. In addition, we find that the von Neumann entropy $S_{\text{ABCDI}}$, $S_{\text{ABCIDI}}$, $S_{\text{ABICIDI}}$ and $S_{\text{AIBICIDI}}$ always decrease with the controllable angle $\theta$, while the entropies $S_{3-3~\rm non}$, $S_{3-2~\rm non}$, $S_{3-1~\rm non}$ and $S_{3-0~\rm non}$ first increase with the angle $\theta$ and then decrease with it.
Keywords:  tetrapartite      generalized GHZ state      entanglement measures      dirac field      noninertial frames  
Received:  28 June 2021      Revised:  14 August 2021      Accepted manuscript online:  01 September 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Fund: This work was partially supported by the 20210414-SIPIPN, Mexico.
Corresponding Authors:  Qian Dong, Guo-Hua Sun, Shi-Hai Dong     E-mail:  dldongqian@gmail.com;sunghdb@yahoo.com;dongsh2@yahoo.com

Cite this article: 

Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海) Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames 2022 Chin. Phys. B 31 030303

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 77
[2] Schrödinger E 1936 Math. Proc. Camb. Philo. Soc. 31 555
[3] Schrödinger E 1936 Math. Proc. Camb. Philo. Soc. 32 446
[4] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H, Bernstein E, Brassard G and Vazirani U 2011 SIAM Journal on Computing 26 1411
[6] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin:Springer-Verlag)
[7] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge:Cambridge University Press)
[8] Werner R F 1989 Phys. Rev. A 54 4277
[9] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[10] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[11] Peres A 1996 Phys. Rev. Lett. 76 1413
[12] Zyczkowski K and Horodecki P 1998 Phys. Rev. A 58 883
[13] Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik 127 9788
[14] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[15] Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452
[16] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[17] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075
[18] Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562
[19] Bennett C H, DiVicenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett. 82 5385
[20] Modi K, Brodutch A, Cable H, Patrek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[21] Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326
[22] Montero M, León J and Martínez M 2011 Phys. Rev. A 84 042320
[23] Shamirzaie M, Esfahani B N and Soltani M 2012 Int. J. Theor. Phys. 51 787
[24] Metwally N 2013 Int. J. Mod. Phys. B 27 1350155
[25] Smith A and Mann R B 2012 Phys. Rev. A 86 012306
[26] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[27] Wang J and Jiang J 2011 Phys. Rev. A 83 022314
[28] Qiang W C, Sun G H, Camacho-Nieto O and Dong S H 2017 arXiv:1711. 04230v1[quant-ph]
[29] Wang J and Jiang J 2018 Phys. Rev. A 97 029902
[30] Hwang M R, Park D and Jung E 2011 Phys. Rev. A 83 012111
[31] Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336
[32] Khan S 2014 Ann. Phys. 348 270
[33] Khan S, Khan N A and Khan M K 2014 Commu. Theor. Phys. 61 281
[34] Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D 86 025026
[35] Martín-Martínez E and Fuentes I 2011 Phys. Rev. A 83 052306
[36] Mehri-Dehnavi H, Mirza B, Mohammadzadeh H and Rahimi R 2011 Ann. Phys. 326 1320
[37] Park D K 2016 Quantum Information Processing 15 3189
[38] Torres-Arenas A J, Dong Q, Sun G H, Qiang W C and Dong S H 2019 Phys. Lett. B 789 93
[39] Torres-Arenas A J, López-Zũniga E O, Saldana-Herrera J A, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301
[40] Qiang W C, Sun G H, Dong Q and Dong S H 2018 Phys. Rev. A 98 022320
[41] Dong Q, Torres-Arenas A J, Sun G H, Qiang W C and Dong S H 2019 Frotiers of Physics 14 21603
[42] Dong Q, Sanchez Manilla A A, Lóopez Yañez I, Sun G H and Dong S H 2019 Physica Scripta 94 105101
[43] Qiang W C, Dong Q, Mercado Sanchez M A, Sun G H and Dong S H 2019 Quantum Information Processing 18 314
[44] Dong Q, Mercado Sanchez M A, Sun G H, Toutounji M and Dong S H 2019 Chin. Phys. Lett. 36 100301
[45] Dong Q, Sun G H, Toutounji M and Dong S H 2020 Optik 201 163487
[46] Dong Q, Torres-Arenas A J, Sun G H and Dong S H 2020 Frontier of Physics 15 11602
[47] Mercado Sanchez M A, Sun G H and Dong S H 2020 Physica Scripta 95 115102
[48] Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information (Singapore:World Scientific)
[49] Takagi S 1986 Progress of Theoretical Physics Supplement 88 1
[50] Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D 82 064006
[51] Shi J, Chen J, Liu C, He J, Yu L and Wu T 2019 Journal of Statistical Mechanics 123104
[52] Shi J, Chen J, He J, Wu T and Ye L 2019 Quantum Information Processing 18 300
[53] Williams C P 2010 Explorations in Quantum Computing (New York:Springer Science and Business Media)
[54] Oliveira D S and Ramos R V 2010 Quantum Information Processing 9 497
[55] Sabín C and García-Alcaine G 2008 Euro. Phys. J. D 48 435
[56] von Neumann J 1996 Mathematical Foundations of Quantum Mechanics (New Jersey:Princeton University Press)
[1] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[2] Tetrapartite entanglement measures of W-class in noninertial frames
Ariadna J. Torres-Arenas, Edgar O. López-Zúñiga, J. Antonio Saldaña-Herrera, Qian Dong, Guo-Hua Sun, Shi-Hai Dong. Chin. Phys. B, 2019, 28(7): 070301.
[3] Dynamics of entanglement under decoherence in noninertial frames
Shi Jia-Dong (石甲栋), Wu Tao (吴韬), Song Xue-Ke (宋学科), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(2): 020310.
[4] Teleportation of three-dimensional single particle state in noninertial frames
Wu Qi-Cheng (吴奇成), Wen Jing-Ji (文晶姬), Ji Xin (计新), Yeon Kyu-Hwang. Chin. Phys. B, 2014, 23(2): 020303.
[5] Three-body entanglement induced by spontaneous emission in a three two-level atoms system
Liao Xiang-Ping (廖湘萍), Fang Mao-Fa (方卯发), Zheng Xiao-Juan (郑小娟), Cai Jian-Wu (蔡建武). Chin. Phys. B, 2006, 15(2): 353-364.
[6] Late-time evolution of massive Dirac fields in the Kerr background
He Xi(贺喜) and Jing Ji-Liang(荆继良). Chin. Phys. B, 2006, 15(12): 2850-2855.
[7] Divergence structure of the statistical entropy of the Dirac field in a plane symmetry black hole geometry
Li Gu-Qiang (李固强). Chin. Phys. B, 2005, 14(3): 468-471.
No Suggested Reading articles found!