Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜)1,†, R. Santana Carrillo1, Guo-Hua Sun(孙国华)2,‡, and Shi-Hai Dong(董世海)3,4,§
Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico; 2 Catedratica CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX ′ 07738, Mexico; 3 Research Center for Quantum Physics, Huzhou University, Huzhou 313000, China; 4 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
Abstract Using a single-mode approximation, we carry out the entanglement measures, e.g., the negativity and von Neumann entropy when a tetrapartite generalized GHZ state is treated in a noninertial frame, but only uniform acceleration is considered for simplicity. In terms of explicit negativity calculated, we notice that the difference between the algebraic average and geometric average is very small with the increasing accelerated observers and they are totally equal when all four qubits are accelerated simultaneously. The entanglement properties are discussed from one accelerated observer to all four accelerated observers. It is shown that the entanglement still exists even if the acceleration parameter goes to infinity. It is interesting to discover that all 1-1 tangles are equal to zero, but 1-3 and 2-2 tangles always decrease when the acceleration parameter increases. We also study the von Neumann entropy and find that it increases with the number of the accelerated observers. In addition, we find that the von Neumann entropy , , and always decrease with the controllable angle , while the entropies , , and first increase with the angle and then decrease with it.
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海) Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames 2022 Chin. Phys. B 31 030303
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev.47 77 [2] Schrödinger E 1936 Math. Proc. Camb. Philo. Soc.31 555 [3] Schrödinger E 1936 Math. Proc. Camb. Philo. Soc.32 446 [4] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett.70 1895 [5] Bennett C H, Bernstein E, Brassard G and Vazirani U 2011 SIAM Journal on Computing26 1411 [6] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin:Springer-Verlag) [7] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge:Cambridge University Press) [8] Werner R F 1989 Phys. Rev. A54 4277 [9] Gühne O and Tóth G 2009 Phys. Rep.474 1 [10] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys.81 865 [11] Peres A 1996 Phys. Rev. Lett.76 1413 [12] Zyczkowski K and Horodecki P 1998 Phys. Rev. A58 883 [13] Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik127 9788 [14] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett.78 2275 [15] Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A56 4452 [16] Vedral V and Plenio M B 1998 Phys. Rev. A57 1619 [17] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A57 R4075 [18] Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett.83 3562 [19] Bennett C H, DiVicenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett.82 5385 [20] Modi K, Brodutch A, Cable H, Patrek T and Vedral V 2012 Rev. Mod. Phys.84 1655 [21] Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A74 032326 [22] Montero M, León J and Martínez M 2011 Phys. Rev. A84 042320 [23] Shamirzaie M, Esfahani B N and Soltani M 2012 Int. J. Theor. Phys.51 787 [24] Metwally N 2013 Int. J. Mod. Phys. B27 1350155 [25] Smith A and Mann R B 2012 Phys. Rev. A86 012306 [26] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A62 062314 [27] Wang J and Jiang J 2011 Phys. Rev. A83 022314 [28] Qiang W C, Sun G H, Camacho-Nieto O and Dong S H 2017 arXiv:1711. 04230v1[quant-ph] [29] Wang J and Jiang J 2018 Phys. Rev. A97 029902 [30] Hwang M R, Park D and Jung E 2011 Phys. Rev. A83 012111 [31] Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A89 042336 [32] Khan S 2014 Ann. Phys.348 270 [33] Khan S, Khan N A and Khan M K 2014 Commu. Theor. Phys.61 281 [34] Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D86 025026 [35] Martín-Martínez E and Fuentes I 2011 Phys. Rev. A83 052306 [36] Mehri-Dehnavi H, Mirza B, Mohammadzadeh H and Rahimi R 2011 Ann. Phys.326 1320 [37] Park D K 2016 Quantum Information Processing15 3189 [38] Torres-Arenas A J, Dong Q, Sun G H, Qiang W C and Dong S H 2019 Phys. Lett. B789 93 [39] Torres-Arenas A J, López-Zũniga E O, Saldana-Herrera J A, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B28 070301 [40] Qiang W C, Sun G H, Dong Q and Dong S H 2018 Phys. Rev. A98 022320 [41] Dong Q, Torres-Arenas A J, Sun G H, Qiang W C and Dong S H 2019 Frotiers of Physics14 21603 [42] Dong Q, Sanchez Manilla A A, Lóopez Yañez I, Sun G H and Dong S H 2019 Physica Scripta94 105101 [43] Qiang W C, Dong Q, Mercado Sanchez M A, Sun G H and Dong S H 2019 Quantum Information Processing18 314 [44] Dong Q, Mercado Sanchez M A, Sun G H, Toutounji M and Dong S H 2019 Chin. Phys. Lett.36 100301 [45] Dong Q, Sun G H, Toutounji M and Dong S H 2020 Optik201 163487 [46] Dong Q, Torres-Arenas A J, Sun G H and Dong S H 2020 Frontier of Physics15 11602 [47] Mercado Sanchez M A, Sun G H and Dong S H 2020 Physica Scripta95 115102 [48] Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information (Singapore:World Scientific) [49] Takagi S 1986 Progress of Theoretical Physics Supplement88 1 [50] Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D82 064006 [51] Shi J, Chen J, Liu C, He J, Yu L and Wu T 2019 Journal of Statistical Mechanics 123104 [52] Shi J, Chen J, He J, Wu T and Ye L 2019 Quantum Information Processing18 300 [53] Williams C P 2010 Explorations in Quantum Computing (New York:Springer Science and Business Media) [54] Oliveira D S and Ramos R V 2010 Quantum Information Processing9 497 [55] Sabín C and García-Alcaine G 2008 Euro. Phys. J. D48 435 [56] von Neumann J 1996 Mathematical Foundations of Quantum Mechanics (New Jersey:Princeton University Press)
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.