Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100307    DOI: 10.1088/1674-1056/27/10/100307
GENERAL Prev   Next  

Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage

Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新)
Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  

Combining adiabatic passage and Rydberg antiblockade, we propose a scheme to implement a two-qubit phase gate between two Rydberg atoms. Detuning parameters between frequencies of atomic transitions and those of the corresponding driving lasers are carefully chosen to offset the blockade effect of two Rydberg atoms, so that an effective Hamiltonian, representing a single-photon detuning Λ-type three-level system and concluding the quantum state of two Rydberg atoms excited simultaneously, is obtained. The adiabatic-passage technique, based on the effective Hamiltonian, is adopted to implement a two-atom phase gate by using two time-dependent Rabi frequencies. Numerical simulations indicate that a high-fidelity two-qubit π-phase gate is constructed and its operation time does not have to be controlled accurately. Besides, owing to the long coherence time of the Rydberg state, the phase gate is robust against atomic spontaneous emission.

Keywords:  quantum phase gate      Rydberg antiblockade      adiabatic passage  
Received:  01 June 2018      Revised:  17 July 2018      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11464046).

Corresponding Authors:  Xin Ji     E-mail:  jixin@ybu.edu.cn

Cite this article: 

Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新) Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage 2018 Chin. Phys. B 27 100307

[1] Deutsch D 1985 Proc. Roy. Soc. London Ser. A 400 97
[2] Grover L K 1997 Phys. Rev. Lett. 79 325
[3] Grover L K 1998 Phys. Rev. Lett. 80 4329
[4] DiVincenzo D P 1995 Phys. Rev. A 51 1015
[5] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
[6] Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[7] Yi X X, Su X H and You L 2003 Phys. Rev. Lett. 90 097902
[8] Moller D, Madsen L B and Molmer K 2008 Phys. Rev. Lett. 100 170504
[9] Rao D D B and Molmer K 2014 Phys. Rev. A 89 030301(R)
[10] Liu X, Fang G Y, Liao Q H and Liu S T 2014 Phys. Rev. A 90 062330
[11] Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
[12] Borges H S and Villas-Bôas C J 2016 Phys. Rev. A 94 052337
[13] Qin W, Wang X, Miranowicz A, Zhong Z and Nori F 2017 Phys. Rev. A 96 012315
[14] Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
[15] Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
[16] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[17] Kang Y H, Xia Y and Lu P M 2016 Quantum Inf. Process. 15 4521
[18] Shao X Q, Zhu A D, Zhang S, Chung J S and Yeon K H 2007 Phys. Rev. A 75 034307
[19] Zhang Y Q and Zhang S 2009 Chin. Phys. B 18 4683
[20] Zheng S B 2009 Chin. Phys. B 18 3453
[21] Gershenfeld N A and Chuang I L 1997 Science 275 350
[22] Yang C P and Han S 2006 Phys. Rev. A 73 032317
[23] Shao X Q, Zhao Y F, Zhang S and Chen L 2009 Chin. Phys. B 18 5161
[24] Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
[25] Jaksch D, Cirac J I, Zoller P, Rolston S L, R Côté and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[26] Lukin M D, Fleischhauer M, R Côté, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
[27] Shao X Q, Zheng T Y, Oh C H and Zhang S 2014 J. Opt. Soc. Am. B 31 827
[28] Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 052313
[29] Su S L, Guo Q, Wang H F and Zhang S 2015 Phys. Rev. A 92 022328
[30] Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317
[31] Shao X Q, Wu J H, Yi X X and Long G L 2017 Phys. Rev. A 96 062315
[32] Zhao P Z, Cui X D, Xu G F, Sjöqvist E and Tong D M 2017 Phys. Rev. A 96 052316
[33] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2018 Phys. Rev. A 97 042336
[34] Yan D, Cui C L, Zhang M and Wu J H 2011 Phys. Rev. A 84 043405
[35] Tian X D, Liu Y M, Cui C L and Wu J H 2015 Phys. Rev. A 92 063411
[36] Su S L, Liang E, Zhang S, Wen J J, Sun L L, Jin Z and Zhu A D 2016 Phys. Rev. A 93 012306
[37] Su S L, Gao Y, Liang E and Zhang S 2017 Phys. Rev. A 92 022319
[38] Su S L, Tian Y, Shen H Z, Zang H, Liang E and Zhang S 2017 Phys. Rev. A 96 042335
[39] Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 062339
[40] Shao X Q, Li D X, Ji Y Q, Wu J H and Yi X X 2017 Phys. Rev. A 96 012328
[41] Ji Y Q, Dai C M, Shao X Q and Yi X X 2017 Quantum Inf. Process. 16 259
[42] Zhao Y J, Liu B, Ji Y Q, Tang S Q and Shao X Q 2017 Sci. Rep. 7 16489
[43] Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Phys. Rev. A 97 032328
[44] James D F V and Jerke J 2007 Can. J. Phys. 85 625
[45] Born M and Fock V 1928 Zeitschrift für Physik 51 165
[46] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[47] Berry M V 1984 Proc. R. Soc. A 392 45
[48] Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 38484
[49] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nat. Phys. 5 115
[50] Miroshnychenko Y, Gaëtan A, Evellin C, Grangier P, Comparat D, Pillet P, Wilk T and Browaeys A 2010 Phys. Rev. A 82 013405
[51] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[52] del Campo A 2013 Phys. Rev. Lett. 111 100502
[53] Ibáñez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett. 109 100403
[54] Song X K, Ai Q, Qiu J and Deng F G 2016 Phys. Rev. A 93 052324
[55] Chen Y H, Xia Y, Wu Q C, Huang B H and Song J 2016 Phys. Rev. A 93 052109
[56] Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
[57] Wu Q C, Chen Y H, Huang B H, Song J, Xia Y and Zheng S B 2016 Opt. Express 24 22847
[58] Chen Y H, Xia Y, Chen Q Q and Song J 2014 Phys. Rev. A 89 033856
[59] Chen Y H, Xia Y, Chen Q Q and Song J 2014 Laser Phys. Lett. 11 115201
[60] Chen Y H, Xia Y, Song J and Chen Q Q 2015 Sci. Rep. 5 15616
[61] Chen Z, Chen Y H, Song J, Xia Y and Huang B H 2016 Sci. Rep. 6 22202
[62] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306
[63] Xu J, Yu L, Wu J L and Ji X 2017 Chin. Phys. B 26 090301
[1] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[2] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[3] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[4] Geometrical representation of coherent tunneling process in two-waveguide and three-waveguide coupler
Jian Shi(时坚), Rui-Qiong Ma(马瑞琼), Zuo-Liang Duan(段作梁), Meng Liang(梁猛), Bao-Yu Chai(柴宝玉), Jun Dong(董军). Chin. Phys. B, 2017, 26(12): 124214.
[5] Production and detection of ultracold Cs2 molecules via four-photon adiabatic passage
Li Jian (李健), Liu Yong (刘勇), Cong Shu-Lin (丛书林). Chin. Phys. B, 2014, 23(1): 010308.
[6] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[7] Deterministic generation of Greenberger–Horne–Zeilinger and W states for three distant atoms via adiabatic passage
Song Pei-Jun (宋佩君), Si Liu-Gang (司留刚), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2011, 20(5): 050308.
[8] Generation of Wn state with three atoms trapped in two remote cavities coupled by an optical fibre
Li Yan-Ling(李艳玲) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2011, 20(5): 050314.
[9] One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics
Ma Song-She(马宋设), Chen Mei-Feng(陈美锋), and Jiang Xia-Ping(蒋夏萍) . Chin. Phys. B, 2011, 20(12): 120308.
[10] Robust generation of qutrit entanglement via adiabatic passage of dark states
Yang Zhen-Biao(杨贞标), Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(9): 094205.
[11] One-step implementation of an N-qubit quantum phase gate through a double Raman passage
LÜ Hai-Yan(吕海燕), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(3): 034205.
[12] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[13] Dynamical instability and adiabatic evolution of the atom--homonuclear--trimer dark state in a condensate system
Meng Shao-Ying(孟少英), Wu Wei(吴炜), Liu Bin(刘彬), Ye Di-Fa(叶地发), and Fu Li-Bin(傅立斌). Chin. Phys. B, 2009, 18(9): 3844-3849.
[14] Robust scheme for implemention of quantum phase gates for two atoms
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2009, 18(8): 3453-3456.
[15] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
No Suggested Reading articles found!