|
|
Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage |
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新) |
Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract Combining adiabatic passage and Rydberg antiblockade, we propose a scheme to implement a two-qubit phase gate between two Rydberg atoms. Detuning parameters between frequencies of atomic transitions and those of the corresponding driving lasers are carefully chosen to offset the blockade effect of two Rydberg atoms, so that an effective Hamiltonian, representing a single-photon detuning Λ-type three-level system and concluding the quantum state of two Rydberg atoms excited simultaneously, is obtained. The adiabatic-passage technique, based on the effective Hamiltonian, is adopted to implement a two-atom phase gate by using two time-dependent Rabi frequencies. Numerical simulations indicate that a high-fidelity two-qubit π-phase gate is constructed and its operation time does not have to be controlled accurately. Besides, owing to the long coherence time of the Rydberg state, the phase gate is robust against atomic spontaneous emission.
|
Received: 01 June 2018
Revised: 17 July 2018
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11464046). |
Corresponding Authors:
Xin Ji
E-mail: jixin@ybu.edu.cn
|
Cite this article:
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新) Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage 2018 Chin. Phys. B 27 100307
|
[1] |
Deutsch D 1985 Proc. Roy. Soc. London Ser. A 400 97
|
[2] |
Grover L K 1997 Phys. Rev. Lett. 79 325
|
[3] |
Grover L K 1998 Phys. Rev. Lett. 80 4329
|
[4] |
DiVincenzo D P 1995 Phys. Rev. A 51 1015
|
[5] |
Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
|
[6] |
Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
|
[7] |
Yi X X, Su X H and You L 2003 Phys. Rev. Lett. 90 097902
|
[8] |
Moller D, Madsen L B and Molmer K 2008 Phys. Rev. Lett. 100 170504
|
[9] |
Rao D D B and Molmer K 2014 Phys. Rev. A 89 030301(R)
|
[10] |
Liu X, Fang G Y, Liao Q H and Liu S T 2014 Phys. Rev. A 90 062330
|
[11] |
Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
|
[12] |
Borges H S and Villas-Bôas C J 2016 Phys. Rev. A 94 052337
|
[13] |
Qin W, Wang X, Miranowicz A, Zhong Z and Nori F 2017 Phys. Rev. A 96 012315
|
[14] |
Duan L M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
|
[15] |
Deng Z J, Zhang X L, Wei H, Gao K L and Feng M 2007 Phys. Rev. A 76 044305
|
[16] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[17] |
Kang Y H, Xia Y and Lu P M 2016 Quantum Inf. Process. 15 4521
|
[18] |
Shao X Q, Zhu A D, Zhang S, Chung J S and Yeon K H 2007 Phys. Rev. A 75 034307
|
[19] |
Zhang Y Q and Zhang S 2009 Chin. Phys. B 18 4683
|
[20] |
Zheng S B 2009 Chin. Phys. B 18 3453
|
[21] |
Gershenfeld N A and Chuang I L 1997 Science 275 350
|
[22] |
Yang C P and Han S 2006 Phys. Rev. A 73 032317
|
[23] |
Shao X Q, Zhao Y F, Zhang S and Chen L 2009 Chin. Phys. B 18 5161
|
[24] |
Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
|
[25] |
Jaksch D, Cirac J I, Zoller P, Rolston S L, R Côté and Lukin M D 2000 Phys. Rev. Lett. 85 2208
|
[26] |
Lukin M D, Fleischhauer M, R Côté, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
|
[27] |
Shao X Q, Zheng T Y, Oh C H and Zhang S 2014 J. Opt. Soc. Am. B 31 827
|
[28] |
Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 052313
|
[29] |
Su S L, Guo Q, Wang H F and Zhang S 2015 Phys. Rev. A 92 022328
|
[30] |
Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317
|
[31] |
Shao X Q, Wu J H, Yi X X and Long G L 2017 Phys. Rev. A 96 062315
|
[32] |
Zhao P Z, Cui X D, Xu G F, Sjöqvist E and Tong D M 2017 Phys. Rev. A 96 052316
|
[33] |
Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2018 Phys. Rev. A 97 042336
|
[34] |
Yan D, Cui C L, Zhang M and Wu J H 2011 Phys. Rev. A 84 043405
|
[35] |
Tian X D, Liu Y M, Cui C L and Wu J H 2015 Phys. Rev. A 92 063411
|
[36] |
Su S L, Liang E, Zhang S, Wen J J, Sun L L, Jin Z and Zhu A D 2016 Phys. Rev. A 93 012306
|
[37] |
Su S L, Gao Y, Liang E and Zhang S 2017 Phys. Rev. A 92 022319
|
[38] |
Su S L, Tian Y, Shen H Z, Zang H, Liang E and Zhang S 2017 Phys. Rev. A 96 042335
|
[39] |
Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 062339
|
[40] |
Shao X Q, Li D X, Ji Y Q, Wu J H and Yi X X 2017 Phys. Rev. A 96 012328
|
[41] |
Ji Y Q, Dai C M, Shao X Q and Yi X X 2017 Quantum Inf. Process. 16 259
|
[42] |
Zhao Y J, Liu B, Ji Y Q, Tang S Q and Shao X Q 2017 Sci. Rep. 7 16489
|
[43] |
Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Phys. Rev. A 97 032328
|
[44] |
James D F V and Jerke J 2007 Can. J. Phys. 85 625
|
[45] |
Born M and Fock V 1928 Zeitschrift für Physik 51 165
|
[46] |
Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
|
[47] |
Berry M V 1984 Proc. R. Soc. A 392 45
|
[48] |
Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 38484
|
[49] |
Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nat. Phys. 5 115
|
[50] |
Miroshnychenko Y, Gaëtan A, Evellin C, Grangier P, Comparat D, Pillet P, Wilk T and Browaeys A 2010 Phys. Rev. A 82 013405
|
[51] |
Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
|
[52] |
del Campo A 2013 Phys. Rev. Lett. 111 100502
|
[53] |
Ibáñez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett. 109 100403
|
[54] |
Song X K, Ai Q, Qiu J and Deng F G 2016 Phys. Rev. A 93 052324
|
[55] |
Chen Y H, Xia Y, Wu Q C, Huang B H and Song J 2016 Phys. Rev. A 93 052109
|
[56] |
Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
|
[57] |
Wu Q C, Chen Y H, Huang B H, Song J, Xia Y and Zheng S B 2016 Opt. Express 24 22847
|
[58] |
Chen Y H, Xia Y, Chen Q Q and Song J 2014 Phys. Rev. A 89 033856
|
[59] |
Chen Y H, Xia Y, Chen Q Q and Song J 2014 Laser Phys. Lett. 11 115201
|
[60] |
Chen Y H, Xia Y, Song J and Chen Q Q 2015 Sci. Rep. 5 15616
|
[61] |
Chen Z, Chen Y H, Song J, Xia Y and Huang B H 2016 Sci. Rep. 6 22202
|
[62] |
Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306
|
[63] |
Xu J, Yu L, Wu J L and Ji X 2017 Chin. Phys. B 26 090301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|