Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080303    DOI: 10.1088/1674-1056/24/8/080303
GENERAL Prev   Next  

Decay of N-qubit GHZ states in Pauli channels

Chen Xiao-Yu (陈小余), Wang Ting-Ting (王婷婷)
College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract  An N-qubit Greenberger–Horne–Zeilinger (GHZ) state has many applications in various quantum information tasks and can be realized in different experimental schemes. A GHZ diagonal state evolves to another GHZ diagonal state in independent parallel Pauli channels. We give the explicit expression of the resultant GHZ diagonal state in terms of the initial state and channel parameters. If the initial state is a pure N qubit GHZ state or a three-qubit GHZ diagonal state admits a condition, the full separability criterion of the Pauli noisy state is equivalent to positive partial transpose (PPT) criterion. Thus the fully separable condition follows.
Keywords:  full separability      GHZ state      Pauli noise  
Received:  22 September 2014      Revised:  19 March 2015      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375152).
Corresponding Authors:  Chen Xiao-Yu     E-mail:  xychen@mail.zjgsu.edu.cn

Cite this article: 

Chen Xiao-Yu (陈小余), Wang Ting-Ting (王婷婷) Decay of N-qubit GHZ states in Pauli channels 2015 Chin. Phys. B 24 080303

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Gühne O and Tóth G 2009 Phys. Rep. 474 1
[3] Monz T, Schindler P, Barreiro J T, et al. 2011 Phys. Rev. Lett. 106 130506
[4] Yao X C, Wang T X, Xu P, et al. 2012 Nat. Photon. 6 225
[5] Neeley M, Bialczak R C, Lenander M, et al. 2010 Nature 467 570
[6] Neumann P, Mizuochi N, Rempp F, et al. 2008 Science 320 1326
[7] Cavalcanti D, Chaves R, Aolita L, Davidovich L and Acín A 2009 Phys. Rev. Lett. 103 030502
[8] Aolita L, Cavalcanti D, Chaves R, Dhara C, Davidovich L and Acín A 2010 Phys. Rev. A 82 032317
[9] Gühne O and Seevinck M 2010 New J. Phys. 12 053002
[10] Jungnitsch B, Moroder T and Gühne O 2011 Phys. Rev. Lett. 106 190502
[11] Kay A 2011 Phys. Rev. A 83 020303
[12] Gühne O 2011 Phys. Lett. A 375 406
[13] Guo Q Q, Chen X Y and Wang Y Y 2014 Chin. Phys. B 23 050309
[14] Chen X Y, Jiang L Z, Yu P and Tian M 2012 arXiv: 1204.5511
[15] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[16] Ma Y, Dong K and Tian G H 2014 Chin. Phys. B 23 094204
[17] Hein M, Dür W, Eisert J, Rossendorf R, Van den Nest M and Briegel H J 2006 axXiv: quant-ph/0602096
[1] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[4] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[5] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[6] Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis
Chen Li-Bing (陈立冰), Lu Hong (路洪). Chin. Phys. B, 2015, 24(7): 070307.
[7] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[8] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田). Chin. Phys. B, 2014, 23(2): 020311.
[9] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[10] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[11] Knotted pictures of the GHZ states on the surface of trivial torus
Gu Zhi-Yu(顾之雨) and Qian Shang-Wu(钱尚武) . Chin. Phys. B, 2012, 21(7): 070201.
[12] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[13] Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism
Ni Bin-Bin(倪彬彬), Gu Yong-Jian(顾永建), Chen Xiao-Dong(陈晓东), Liang Hong-Hui(梁鸿辉), Lin Xiu(林秀), and Lin Xiu-Min(林秀敏). Chin. Phys. B, 2010, 19(9): 090316.
[14] Generation of entangled coherent states through cavity-assisted interaction
Chen Xiao-Dong(陈晓东), Gu Yong-Jian(顾永建), Liang Hong-Hui(梁鸿辉), Ni Bin-Bin(倪彬彬), and Lin Xiu-Min(林秀敏) . Chin. Phys. B, 2010, 19(4): 040310.
[15] Quantum secure direct communication with Greenberger--Horne--Zeilinger-type state (GHZ state) over noisy channels
Zhang Xiao-Long(张小龙), Zhang Yue-Xia(张月霞), and Wei Hua(魏华). Chin. Phys. B, 2009, 18(2): 435-439.
No Suggested Reading articles found!