|
|
Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis |
Chen Li-Bing (陈立冰), Lu Hong (路洪) |
Department of Photoelectron and Physics, Foshan University, Foshan 528000, China |
|
|
Abstract We present a scheme for implementing locally a nonlocal N-target controlled–controlled gate with unit probability of success by harnessing two (N+1)-qubit Greenberger–Horne–Zeilinger (GHZ) states as quantum channel and N qutrits as catalyser. The quantum network that implements this nonlocal (N+2)-body gate is built entirely of local single-body and two-body gates, and has only (3N+2) two-body gates. This result suggests that both the computational depth of quantum network and the quantum resources required to perform this nonlocal gate might be significantly reduced. This scheme can be generalized straightforwardly to implement a nonlocal N-target and M-control qubits gate.
|
Received: 08 December 2014
Revised: 24 January 2015
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 6029431). |
Corresponding Authors:
Chen Li-Bing
E-mail: chlibing2008@f163.com
|
Cite this article:
Chen Li-Bing (陈立冰), Lu Hong (路洪) Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis 2015 Chin. Phys. B 24 070307
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 25, 171, 213, 217, 248, 425
|
[2] |
Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
|
[3] |
Xue P and Wu J Z 2012 Chin. Phys. B 21 010308
|
[4] |
Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307
|
[5] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
|
[6] |
Qin W, Wang C, Cao Y and Long G L 2014 Phys. Rev. A 89 062314
|
[7] |
Ma H Q, Wei K J, Yang J H, Li R X and Zhu W 2014 Chin. Phys. B 23 100307
|
[8] |
Yu X T, Zhang Z C and Xu J 2014 Chin. Phys. B 23 010303
|
[9] |
Ye M Y, Zhang Y S and Guo G C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 14
|
[10] |
Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
|
[11] |
Huang Y F, Ren X F, Zheng Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
|
[12] |
Chen L B and Lu H 2011 The European Physical Journal D 61 745
|
[13] |
Wang A M 2007 Phys. Rev. A 75 062323
|
[14] |
Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 0030
|
[15] |
Cao C, Liu G, Zhang R and Wang C 2014 Chin. Phys. B 23 040304
|
[16] |
Zhang Y, Cao W C and Long G L 2005 Commun. Theor. Phys. 44 625
|
[17] |
Grover L K 1998 Phys. Rev. Lett. 80 4329
|
[18] |
Shor P W 1995 Phys. Rev. A 52 R2493
|
[19] |
Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
|
[20] |
Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
|
[21] |
Liu Y, Long G L and Sun Y 2008 Int. J. Quantum Inform. 6 447
|
[22] |
Greenberger D M, Horne M and Zeilinger A 1989 In Bell's Theorem, Quantum Theory, and Conceptions of the Universe, ed. Kafatos M (Dordrecht: Kluwer Academic) p. 69
|
[23] |
Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[24] |
Sun Q, He J and Ye L 2014 Chin. Phys. B 23 060305
|
[25] |
Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
|
[26] |
Xu J S and Li C F 2015 Sci. Bull. 60 141
|
[27] |
Zhang R, Zhou S H and Cao C 2014 Sci. China-Phys. Mech. Astron. 57 1511
|
[28] |
Ionicioiu R, Spiller T P and Munro W J 2009 Phys. Rev. A 80 012312
|
[29] |
Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
|
[30] |
Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A and Pan J W 2012 Nat. Photon. 6 225
|
[31] |
Ding D, Yan F L and Gao T 2014 Sci. China Ser. G-Phys. Mech. Astron. 57 2098
|
[32] |
Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jannewein T and Zeilinger A 2009 Nat. Phys. 5 389
|
[33] |
Inagaki T, Matsuda N, Tadanaga O, Asobe M and Takesue H 2013 Opt. Express 21 23241
|
[34] |
Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z and Pan J W 2012 Nature 488 185
|
[35] |
Yang Y and Wang A M 2008 Chin. Phys. B 23 020307
|
[36] |
Bruβ D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
|
[37] |
Qin W, Wang C and Long G L 2013 Phys. Rev. A 87 012339
|
[38] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[39] |
Sherson J F, Krauter H, Olsson R K, Julsgaard B, Hammere K, Cirac I and Polzik E S 2006 Nature 443 557
|
[40] |
Gao W B, Fallahi P, Togan E, Delteil A, Chin Y S, Miguel-Sanchez J and Imamoğlu A 2013 Nat. Commun. 4 2744
|
[41] |
Brunner D, Gerardot B D, Dalgarno P A, Wüst G, Karrai K, Stoltz N G, Petroff P M and Warburton R J 2009 Science 325 70
|
[42] |
Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Nat. Phys. 7 109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|