Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070307    DOI: 10.1088/1674-1056/24/7/070307
GENERAL Prev   Next  

Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis

Chen Li-Bing (陈立冰), Lu Hong (路洪)
Department of Photoelectron and Physics, Foshan University, Foshan 528000, China
Abstract  We present a scheme for implementing locally a nonlocal N-target controlled–controlled gate with unit probability of success by harnessing two (N+1)-qubit Greenberger–Horne–Zeilinger (GHZ) states as quantum channel and N qutrits as catalyser. The quantum network that implements this nonlocal (N+2)-body gate is built entirely of local single-body and two-body gates, and has only (3N+2) two-body gates. This result suggests that both the computational depth of quantum network and the quantum resources required to perform this nonlocal gate might be significantly reduced. This scheme can be generalized straightforwardly to implement a nonlocal N-target and M-control qubits gate.
Keywords:  nonlocal N-target controlled-controlled gate      GHZ state      qutrit catalysis  
Received:  08 December 2014      Revised:  24 January 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 6029431).
Corresponding Authors:  Chen Li-Bing     E-mail:  chlibing2008@f163.com

Cite this article: 

Chen Li-Bing (陈立冰), Lu Hong (路洪) Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis 2015 Chin. Phys. B 24 070307

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 25, 171, 213, 217, 248, 425
[2] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
[3] Xue P and Wu J Z 2012 Chin. Phys. B 21 010308
[4] Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307
[5] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[6] Qin W, Wang C, Cao Y and Long G L 2014 Phys. Rev. A 89 062314
[7] Ma H Q, Wei K J, Yang J H, Li R X and Zhu W 2014 Chin. Phys. B 23 100307
[8] Yu X T, Zhang Z C and Xu J 2014 Chin. Phys. B 23 010303
[9] Ye M Y, Zhang Y S and Guo G C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 14
[10] Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
[11] Huang Y F, Ren X F, Zheng Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
[12] Chen L B and Lu H 2011 The European Physical Journal D 61 745
[13] Wang A M 2007 Phys. Rev. A 75 062323
[14] Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 0030
[15] Cao C, Liu G, Zhang R and Wang C 2014 Chin. Phys. B 23 040304
[16] Zhang Y, Cao W C and Long G L 2005 Commun. Theor. Phys. 44 625
[17] Grover L K 1998 Phys. Rev. Lett. 80 4329
[18] Shor P W 1995 Phys. Rev. A 52 R2493
[19] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[20] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
[21] Liu Y, Long G L and Sun Y 2008 Int. J. Quantum Inform. 6 447
[22] Greenberger D M, Horne M and Zeilinger A 1989 In Bell's Theorem, Quantum Theory, and Conceptions of the Universe, ed. Kafatos M (Dordrecht: Kluwer Academic) p. 69
[23] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[24] Sun Q, He J and Ye L 2014 Chin. Phys. B 23 060305
[25] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[26] Xu J S and Li C F 2015 Sci. Bull. 60 141
[27] Zhang R, Zhou S H and Cao C 2014 Sci. China-Phys. Mech. Astron. 57 1511
[28] Ionicioiu R, Spiller T P and Munro W J 2009 Phys. Rev. A 80 012312
[29] Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
[30] Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A and Pan J W 2012 Nat. Photon. 6 225
[31] Ding D, Yan F L and Gao T 2014 Sci. China Ser. G-Phys. Mech. Astron. 57 2098
[32] Fedrizzi A, Ursin R, Herbst T, Nespoli M, Prevedel R, Scheidl T, Tiefenbacher F, Jannewein T and Zeilinger A 2009 Nat. Phys. 5 389
[33] Inagaki T, Matsuda N, Tadanaga O, Asobe M and Takesue H 2013 Opt. Express 21 23241
[34] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z and Pan J W 2012 Nature 488 185
[35] Yang Y and Wang A M 2008 Chin. Phys. B 23 020307
[36] Bruβ D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[37] Qin W, Wang C and Long G L 2013 Phys. Rev. A 87 012339
[38] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[39] Sherson J F, Krauter H, Olsson R K, Julsgaard B, Hammere K, Cirac I and Polzik E S 2006 Nature 443 557
[40] Gao W B, Fallahi P, Togan E, Delteil A, Chin Y S, Miguel-Sanchez J and Imamoğlu A 2013 Nat. Commun. 4 2744
[41] Brunner D, Gerardot B D, Dalgarno P A, Wüst G, Karrai K, Stoltz N G, Petroff P M and Warburton R J 2009 Science 325 70
[42] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Nat. Phys. 7 109
[1] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[4] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[5] Decay of N-qubit GHZ states in Pauli channels
Chen Xiao-Yu (陈小余), Wang Ting-Ting (王婷婷). Chin. Phys. B, 2015, 24(8): 080303.
[6] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[7] Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity
Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田). Chin. Phys. B, 2014, 23(2): 020311.
[8] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[9] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[10] Knotted pictures of the GHZ states on the surface of trivial torus
Gu Zhi-Yu(顾之雨) and Qian Shang-Wu(钱尚武) . Chin. Phys. B, 2012, 21(7): 070201.
[11] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[12] Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism
Ni Bin-Bin(倪彬彬), Gu Yong-Jian(顾永建), Chen Xiao-Dong(陈晓东), Liang Hong-Hui(梁鸿辉), Lin Xiu(林秀), and Lin Xiu-Min(林秀敏). Chin. Phys. B, 2010, 19(9): 090316.
[13] Generation of entangled coherent states through cavity-assisted interaction
Chen Xiao-Dong(陈晓东), Gu Yong-Jian(顾永建), Liang Hong-Hui(梁鸿辉), Ni Bin-Bin(倪彬彬), and Lin Xiu-Min(林秀敏) . Chin. Phys. B, 2010, 19(4): 040310.
[14] Quantum secure direct communication with Greenberger--Horne--Zeilinger-type state (GHZ state) over noisy channels
Zhang Xiao-Long(张小龙), Zhang Yue-Xia(张月霞), and Wei Hua(魏华). Chin. Phys. B, 2009, 18(2): 435-439.
[15] Probabilistic and robust preparation of a GHZ-type state via atomic ensembles and linear optics
Lu Xiao-Song(陆小松), Shi Bao-Sen(史保森), and Guo Guang-Can(郭光灿). Chin. Phys. B, 2009, 18(12): 5133-5138.
No Suggested Reading articles found!