Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰)1,2,3, San-Qiu Liu(刘三秋)1,3, and Li-Hua Gong(龚黎华)1,4,†
1 Jiangxi Province Key Laboratory of Fusion and Information Control, Department of Physics, Nanchang University, Nanchang 330031, China; 2 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China; 3 NCU-ASIPP Magnetic Confinement Fusion Joint Lab, Institute of Fusion Energy and Plasma Application, Nanchang University, Nanchang 330031, China; 4 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
Abstract A novel efficient semi-quantum private comparison protocol based on the d-dimensional GHZ states is proposed. With the assistance of semi-honest third party, two classical participants can compare the size relation of their secrets without any information leakage. To reduce the consumption of quantum devices, the qubit efficiency of our protocol is improved by introducing the semi-quantum conception via the existing semi-quantum private comparisons. Furthermore, it is unnecessary to prepare the secure classical authentication channel among participants in advance. It is shown that our protocol is not only correct and efficient, but also free from external and internal attacks.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62161025 and 61871205), the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008), and the Jiangxi Provincial Key Laboratory of Fusion and Information Control, China (Grant No. 20171BCD40005).
Corresponding Authors:
Li-Hua Gong
E-mail: lhgong@ncu.edu.cn
Cite this article:
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华) Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states 2022 Chin. Phys. B 31 010302
[1] Bennett C H and Brassard G 1984 Proceedings of the International Conference on Computers, Systems and Signal Processing, December 1984, Bangalore, India, pp. 175-179 [2] Long G L and Liu X S 2002 Phys. Rev. A65 032302 [3] Zhang Y and Ni Q 2020 Quantum Eng.2 e31 [4] Yin Z Q, Lu F Y, Teng J, Wang S, Chen W, Guo G C and Han Z F 2021 Fundam. Res.1 93 [5] Guo H, Li Z Y, Yu S and Zhang Y C 2021 Fundam. Res.1 96 [6] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A59 1829 [7] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A69 052307 [8] Gao Z K, Li T and Li Z H 2020 Sci. Chin. Phys. Mech. Astron.63 120311 [9] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A68 042317 [10] Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Sci. Bull.59 2541 [11] Wang C 2021 Fundam. Res.1 91 [12] Chen X B, Sun Y R, Xu G and Yang Y X 2019 Inf. Sci.501 172 [13] Xu G, Shan R T, Chen X B, Dong M and Chen Y L 2021 Comput. Mater. Continua69 339 [14] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor.42 055305 [15] Chen X B, Xu G, Niu, X X, Wen Q Y and Yang Y X 2010 Opt. Commun.283 1561 [16] Qiang X G, Zhou X Q, Aungskunsiri K, Cable H and O'Brien J L 2017 Quantum Sci. Technol.2 045002 [17] Long G L 2006 Commun. Theor. Phys.45 825 [18] Jia H Y, Wen Q Y, Song T T and Gao F 2011 Opt. Commun.284 545 [19] Tseng H Y, Lin J and Hwang T 2012 Quantum Inf. Process11 373 [20] Li J, Zhou H F, Jia L and Zhang T T 2014 Int. J. Theor. Phys.53 2167 [21] Chang Y, Zhang W B, Zhang S B, Wang H C, Yan L L, Han G H, Sheng Z W, Huang Y Y, Suo W and Xiong J X 2016 Commun. Theor. Phys.66 621 [22] Xu G, Xiao K, Li Z, Niu X X and Ryan M 2019 Comput. Mater. Continua58 809 [23] Boyer M, Kenigsberg D and Mor T 2007 Phys. Rev. Lett.99 140501 [24] Boyer M, Gelles R, Kenigsberg D and Mor T 2009 Phys. Rev. A79 032341 [25] Zou X F, Qiu D W, Li L Z, Wu L H and Li L J 2009 Phys. Rev. A79 052312 [26] Wang J, Zhang S, Zhang Q and Tang C J 2011 Chin. Phys. Lett.28 100301 [27] Yu K F, Yang C W, Liao C H and Hwang T 2014 Quantum Inf. Process13 1457 [28] Krawec W O 2015 Phys. Rev. A91 032323 [29] Liu Z R and Hwang T 2018 Ann. Phys.530 1700206 [30] Li Q, Chan W H and Long D Y 2010 Phys. Rev. A82 022303 [31] Yang C W and Hwang T 2013 Int. J. Quantum Inf.11 1350052 [32] Chou W H, Hwang T and Gu J 2016 arXiv:1607.07961 [quant-ph] [33] Thapliyala K, Sharma R D and Pathak A 2018 Int. J. Quantum Inf.16 1850047 [34] Ye T Y and Ye C Q 2018 Int. J. Theor. Phys.57 3819 [35] Lin P H, Hwang T and Tsai C W 2019 Quantum Inf. Process18 207 [36] Jiang L Z 2020 Quantum Inf. Process19 180 [37] Zhou N R, Xu Q D, Du N S and Gong L H 2021 Quantum Inf. Process20 124 [38] Lo H K 1997 Phys. Rev. A56 1154 [39] Bai C M, Li Z H, Xu T T and Li Y M 2017 Quantum Inf. Process16 59 [40] Rahaman R and Parker M G 2015 Phys. Rev. A91 022330 [41] Cao H, Ma W P, Lü L D, He Y F and Liu G 2019 Quantum Inf. Process18 287 [42] Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Quantum Inf. Comput.7 329 [43] Ding Y H, Bacco D, Dalgaard K, Cai X L, Zhou X Q, Rottwitt K and Oxenlowe L K 2017 NPJ Quantum Inf.3 25 [44] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys.74 145
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.