Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010302    DOI: 10.1088/1674-1056/ac1413
GENERAL Prev   Next  

Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states

Bing Wang(王冰)1,2,3, San-Qiu Liu(刘三秋)1,3, and Li-Hua Gong(龚黎华)1,4,†
1 Jiangxi Province Key Laboratory of Fusion and Information Control, Department of Physics, Nanchang University, Nanchang 330031, China;
2 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China;
3 NCU-ASIPP Magnetic Confinement Fusion Joint Lab, Institute of Fusion Energy and Plasma Application, Nanchang University, Nanchang 330031, China;
4 Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
Abstract  A novel efficient semi-quantum private comparison protocol based on the d-dimensional GHZ states is proposed. With the assistance of semi-honest third party, two classical participants can compare the size relation of their secrets without any information leakage. To reduce the consumption of quantum devices, the qubit efficiency of our protocol is improved by introducing the semi-quantum conception via the existing semi-quantum private comparisons. Furthermore, it is unnecessary to prepare the secure classical authentication channel among participants in advance. It is shown that our protocol is not only correct and efficient, but also free from external and internal attacks.
Keywords:  semi-quantum private comparison      size relation      dimensional GHZ state      qubit efficiency  
Received:  12 June 2021      Revised:  07 July 2021      Accepted manuscript online:  14 July 2021
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62161025 and 61871205), the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008), and the Jiangxi Provincial Key Laboratory of Fusion and Information Control, China (Grant No. 20171BCD40005).
Corresponding Authors:  Li-Hua Gong     E-mail:  lhgong@ncu.edu.cn

Cite this article: 

Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华) Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states 2022 Chin. Phys. B 31 010302

[1] Bennett C H and Brassard G 1984 Proceedings of the International Conference on Computers, Systems and Signal Processing, December 1984, Bangalore, India, pp. 175-179
[2] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[3] Zhang Y and Ni Q 2020 Quantum Eng. 2 e31
[4] Yin Z Q, Lu F Y, Teng J, Wang S, Chen W, Guo G C and Han Z F 2021 Fundam. Res. 1 93
[5] Guo H, Li Z Y, Yu S and Zhang Y C 2021 Fundam. Res. 1 96
[6] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[7] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[8] Gao Z K, Li T and Li Z H 2020 Sci. Chin. Phys. Mech. Astron. 63 120311
[9] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[10] Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Sci. Bull. 59 2541
[11] Wang C 2021 Fundam. Res. 1 91
[12] Chen X B, Sun Y R, Xu G and Yang Y X 2019 Inf. Sci. 501 172
[13] Xu G, Shan R T, Chen X B, Dong M and Chen Y L 2021 Comput. Mater. Continua 69 339
[14] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
[15] Chen X B, Xu G, Niu, X X, Wen Q Y and Yang Y X 2010 Opt. Commun. 283 1561
[16] Qiang X G, Zhou X Q, Aungskunsiri K, Cable H and O'Brien J L 2017 Quantum Sci. Technol. 2 045002
[17] Long G L 2006 Commun. Theor. Phys. 45 825
[18] Jia H Y, Wen Q Y, Song T T and Gao F 2011 Opt. Commun. 284 545
[19] Tseng H Y, Lin J and Hwang T 2012 Quantum Inf. Process 11 373
[20] Li J, Zhou H F, Jia L and Zhang T T 2014 Int. J. Theor. Phys. 53 2167
[21] Chang Y, Zhang W B, Zhang S B, Wang H C, Yan L L, Han G H, Sheng Z W, Huang Y Y, Suo W and Xiong J X 2016 Commun. Theor. Phys. 66 621
[22] Xu G, Xiao K, Li Z, Niu X X and Ryan M 2019 Comput. Mater. Continua 58 809
[23] Boyer M, Kenigsberg D and Mor T 2007 Phys. Rev. Lett. 99 140501
[24] Boyer M, Gelles R, Kenigsberg D and Mor T 2009 Phys. Rev. A 79 032341
[25] Zou X F, Qiu D W, Li L Z, Wu L H and Li L J 2009 Phys. Rev. A 79 052312
[26] Wang J, Zhang S, Zhang Q and Tang C J 2011 Chin. Phys. Lett. 28 100301
[27] Yu K F, Yang C W, Liao C H and Hwang T 2014 Quantum Inf. Process 13 1457
[28] Krawec W O 2015 Phys. Rev. A 91 032323
[29] Liu Z R and Hwang T 2018 Ann. Phys. 530 1700206
[30] Li Q, Chan W H and Long D Y 2010 Phys. Rev. A 82 022303
[31] Yang C W and Hwang T 2013 Int. J. Quantum Inf. 11 1350052
[32] Chou W H, Hwang T and Gu J 2016 arXiv:1607.07961 [quant-ph]
[33] Thapliyala K, Sharma R D and Pathak A 2018 Int. J. Quantum Inf. 16 1850047
[34] Ye T Y and Ye C Q 2018 Int. J. Theor. Phys. 57 3819
[35] Lin P H, Hwang T and Tsai C W 2019 Quantum Inf. Process 18 207
[36] Jiang L Z 2020 Quantum Inf. Process 19 180
[37] Zhou N R, Xu Q D, Du N S and Gong L H 2021 Quantum Inf. Process 20 124
[38] Lo H K 1997 Phys. Rev. A 56 1154
[39] Bai C M, Li Z H, Xu T T and Li Y M 2017 Quantum Inf. Process 16 59
[40] Rahaman R and Parker M G 2015 Phys. Rev. A 91 022330
[41] Cao H, Ma W P, Lü L D, He Y F and Liu G 2019 Quantum Inf. Process 18 287
[42] Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Quantum Inf. Comput. 7 329
[43] Ding Y H, Bacco D, Dalgaard K, Cai X L, Zhou X Q, Rottwitt K and Oxenlowe L K 2017 NPJ Quantum Inf. 3 25
[44] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[7] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[10] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[11] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[12] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[15] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
No Suggested Reading articles found!